SUPPORTING TEXT

Mechanical cell-matrix feedback explains pairwise and collective endothelial cell
behavior in vitro

René F.M. van Oers, Elisabeth G. Rens, Danielle J. LaValley, Cynthia A. Reinhart-
King, and Roeland M.H. Merks

PLoS Computational Biology 2014

DOCUMENTATION OF SIMULATION CODE

This CPM-FEM model was implemented in C. The visualization is performed using Matlab.

CPM-FEM consists of the following source (.c) and header (.h) files:

e defh: to define parameter values

e struct.h: defines structures used in the code

e functions.h: declares all the functions used in the code (and shows in which .c file defined
e cpmfem.c: the main() function, which calls all other things

e init.c: to initialize pixels and cells, impose external forces and fixations

e read.c: to load input, for instance cell positions

e write.c: to save output, such as cell positions and strains

e cellmoves.c: cellular Potts movement and connectivity constraint

e CPM_dH.c: calculate costs (dH) used in cellular Potts movement

e cellforces.c: calculate cell traction forces

e FE local.c: element stiffness matrices (and using them to calculate stresses and strains)

e FE assembly.c: assembles element stiffness matrices into global stiffness matrix

e FE solver.c: solver for the global set of equations

e FE nodes2dofs.c: some bookkeeping between the set of equations and nodal forces and displacements
e mt.c: contains a good random generator

e mylib.c: some string operations (from Ronald Ruimerman)

Elements and nodes

For elements and nodes we use the VOX and NOD structures respectively. 'VOX' is an abbreviation of 'voxel', a
three-dimensional pixel, a relic from a 3D code I used previously. These structures are defined in structures.h.

In the beginning we initialize voxels and nodes in the functions init_voxels() and init_nodes().

pv = init_voxels();

VOX* init_voxels(void)
{
VOX* pv;
int v, VX, vy;
int i;

pv = calloc(NV, sizeof(VOX));

// set voxel information
for(vy=0; vy<NVY; vy++)
for(vx=0; vx<NVX; vx++)
{

v =vVx + vy*NVX;

/lpv[v]x = vx * VOXSIZE; pv[v].y = vy * VOXSIZE;
pv[v].ctag = 0;

return pv;

H

pn = init_nodes();

NOD#* init_nodes(void)
{
NOD* pn;
int n, nx, ny;

pn = calloc(NN, sizeof(NOD));
// set node information

for(ny=0; ny<NNY; ny++)
for(nx=0; nx<NNX; nx++)

{
n =nx + ny*NNX;
//pn[n].x = nx * VOXSIZE; pn[n].y =ny * VOXSIZE;
pn[n].fx =.0; pn[n].fy = .0;
pn[n].ux = .0; pn[n].uy = .0;
pn[n].restrictx = FALSE; pn[n].restricty = FALSE;
}
return pn;

}

We allocate memory for an array of elements pv ('pointer to voxel'), and an array of nodes pn ('pointer to node").
They are numbered from the bottom left to the top right. For instance, the force in x-direction on the lower right
node is given by pn[NNX-1].fx and the Cellular Potts 'spin' of the top left element is given by pv[(NVY-
1)*NVX].ctag . Remember that numbering in C starts with 0.

Sofar no cells occupy the elements, and the forces on and displacements of the nodes are zero. Cells will be
initialized via init_cells() or read_cells(), and external forces can be imposed on the nodes via set_forces()
(during the simulation also via cell_forces())

Finite Element part

The Finite Element code was written using course material by Baaijens from Eindhoven University (3), but most
of this information can be found in any Finite Element textbook.

The element stiffness matrix K,

First we define an element stiffness matrix (K.), containing all interactions of the nodes of element e with each
other (see (3), p. 67):

K,=[B"DBdQ
Qe

The integration is actually performed in a discrete fashion. Therefore a multiplication by element area and
subsequent summation over the four integration points (see (3), p. 42) of each 2D element is a better
representation:

4
K,=Y B'DBdV
i=1

Here, D is the material matrix for a 2D element under plane stress conditions. D describes the material behaviour
of each element in accordance with its Young’s modulus E and the Poisson’s ratio v:

1 v 0
v 1 0
00 1(1-v)

E
1-v

D=

2

B is the strain displacement matrix for a 2D quadratic element (see (3), p. 67):

ON Lo oN 2 oN s oN T
ox) ox ox) ox
B=| 0 N, 0 oON 2) N, 0 oON 4
dy dy dy dy
ON, ON, 9N, aN, oN, oN, oN, N,
dy ox dy Jdx dy ox dy ox
The shape functions N; are defined as (see (3), p. 39-40):
S
N, =-r)i-s) : :
Ny =1+ r)i-s)
, with local coordinates r and s: r
N, =+(1+7)1+s)
N, =1(1-r)1+s) . ,

The derivatives of the shape functions to the cartesian coordinates x and y are defined as (see (3), p. 40):

dN[ZBN[&_i_aN,.ﬁ _ON, 2
dc Jdr ox Ods ox or VOXSIZE
dN; ON,dr ON, os _ON, 2
dy or dy s " 35 VOXSIZE

The strain displacement matrix B is the same for all elements, because all have the same shape and size. The
material matrix D is also the same for all elements, and hence we need to define K. only once. (even if elements
have different stiffness, K. could still be defined only once and then multiplied with a correcting factor during
assembly, since K. is linear with E in linear elasticicity).

klocal = set_klocal();

double** set _klocal(void)
{
double **klocal;
int i,j,m,n;

// two-point Gaussian integration

// local coordinates of the integration points (1/sqrt(3) = 0.57735027)
double intgrx[4] = {-.57735, .57735, .57735,-.57735};

double intgry[4] = {-.57735, -.57735, 57735, .57735};

double *pD; // pntr to material matrix

double D[3][3]; // material matrix

double *pB; // patr to strain displacement matrix
double B[3][8]; // strain displacement matrix

double Bt[8][3]; // transpose of strain displacement matrix
double BD[8][3]; // Bt * D

double BDB[S][8]; //BD * B

double dV; // volume belonging to integration point

// node positions in local coordinate system
// double nx[4] = {-1, 1, 1,-1};
// double ny[4] = {-1, -1, 1, 1};

// allocate memory for klocal
klocal = calloc(8,sizeof(double*));
for(m=0;m<8;m++)

klocal[m] = calloc(8,sizeof(double));

// set matrix k to zeros

for(m=0;m<8;m++)

for(n=0;n<8;n++)
klocal[m][n] = 0.0;

// calculate stifness matrix of the material (linear elastic isotropic)
pD = &D[0][0];
material matrix(pD);

pB = &B[0][0];

// Determine local stiffness matrix
// by integration. Implemented as summation over all integration points
for(i=0; i<4; i++) // for all integration points
{
// calculate matrix B in intgr pnt i
set_matrix_B(pB, intgrx[i], intgry[i]);

dNdy[i] = (2/VOXSIZE) * 25 * ks[i] * (1 + kx[i] * r);

// calculate strain displacement matrix B
PB+ 0+ (2)) = dNdx[i];
(PpB+ 0+ (2)+) = 0;
*(pB+ 8+ (2*f) = 0
*(pB + 8+ ((2*i)+1)) = dNdy[i];
(pB +2 8 + (2*1)) = dNdy[i];
(pB + 2 8 + ((2*1)+1)) = ANdx[i];
} // endfor all nodes

// Bt is the transpose of B
for(m=0; m<8; m++)
for(n=0; n<3; n++)

Bt[m][n] = B[n][m];

//BD = Bt*D
for(m=0; m<8; m++)
for(n=0; n<3; nt++)
{
BD[m][n] = 0;
for(j=0; j<3; j++)
; BD[m][n] += Bt[m][j] * D[j][n];

//BDB = BD *B
for(m=0; m<8; m++)
for(n=0; n<8; n++)

BDB[m][n] = 0;
for(j=0; j<3; j++)
\ BDB[m][n] += BD[m][j] * B[j][n];

// integration over the volume. This leads to adding to local
// stifness matrix for each integration point
// dV = dx*dy*dz = det(J) * dr*ds*dt
// for cubic voxel elements the volume represented by one
// integration point is equal to dV = (.5*VOXSIZE)"3
dV = .25 * VOXSIZE * VOXSIZE,;
for(m=0; m<8; m++)
for(n=0; n<8; n++)
klocal[m][n] += BDB[m][n] * dV;
} // endfor all integration points

return klocal;

Assembly

We assemble the global stiffness matrix K from all element stiffness matrices K.. K is a huge matrix, of the size
NDOF*NDOF (DOF = degree of freedom). In the case of a 99x99 volume, there are 100* nodes, and 2-100*
DOFs, and the K-matrix would contain (2-100%)* = 400000000 values. For a 3D simulation with a 99x99x99
volume, there 100° nodes, 3-100° DOFs, and (3-100%)* = 9-10"? values in the K-matrix!!!

Luckily, K is a sparse matrix, i.e., a matrix populated primarily with zeros. After all, a node in the volume only
has interactions with the nodes of the surrounding elements.

In 2D there are 3> = 9 nodes in the surrounding elements. These are associated with 18 DOFs. So each of the
DOFs interacts with only 18 other DOFs at most.

In 3D there are 3° = 27 nodes in a the surrounding elements. These are associated with 81 DOFs. So each of the
DOFs interacts with only 81 other DOFs at most.

Going over each row of K you would encounter no more than 18 (2D) or 81 (3D) nonzero values. Further,
because K is a symmetric matrix, we can leave out the lower half. Thus, no more than 10 (2D) or 42 (3D)
nonzeros need to be stored for each row.

K-matrix (NDOFxMNDOF)

maximum # nonzeros per row:
18 in 2D-model, 81 in 3D-model

We store the nonzero values in a 10xXNDOF array kval. Each row gets 10 locations in this array, even if it has
less than 10 nonzeros. The first of these 10 is reserved for the diagonal value of each row, even if it would be a

Zero.

K-matrix upper half

maximum # Nonzeros per row .
10 in 2D-model, 42 in 3D-model

Another 10xNDOF array, kcol, is used to store the column indices of the values in kval. We don’t need to store
the column index of the diagonal values, so we use the first of every 10 locations in kcol, to store the row’s

number of nonzeros.

keol = calloc(10*NDOF,sizeof(int));
kval = calloc(10*NDOF ,sizeof(double));
assembly(kcol.kval klocal, pv);

{

void assembly(int* kcol, double* kval, double** klocal, VOX* pv)

int v, VX, vy;

double value;

int il, j1, ig, jg; // row 1 & column j in klocal and K

int d, a, b, lim;

BOOL alreadynonzero;

int n00, n10, n11, n01;

int topv[8];

double Ef; // multiply klocal with Ef depending on local E

for(d=0;d<NDOF;d++)
{
keol[10*d] = 1;
kval[10*d] = .0;
}

for(vy=0; vy<NVY; vy++)
for(vx=0; vx<NVX; vx++)

{
Ef = 1;//(vx+1)/(double)NVX+.5;

// determine corner node numbers of this element
n00 = (vx)+ (vy)*NNX;

nl0 = (vx+1) + (vy)*NNX;

nll = (vx+1) + (vy+1)*NNX;

n01 = (vx) + (vy+1)*NNX;

topv[0] = 2*n00;
topv[1] =2*n00+1;
topv[2] = 2*n10;
topv[3] =2*n10+1;
topv[4] =2*nl1;
topv[5] =2*nl1+1;
topv[6] = 2*n01;
topv[7] =2*n01+1;

T
Element topology: topv gives for each element the ® 12 ® 14 * 16
degrees of freedom (DOFs) in the same order as used — Uex — — Uax
in the local K-matrix.
. : 2 3
In this example, consider element 2 (vx=0, vy=1). It u? u9 ull
has four corner nodes (n00=3, n10=4, nl11=7, 3 T4y TSV
n01=6), with eight corresponding degrees of freedom ¢_, ng $—i ng & — Ulsg
(6,7,8,9,14,15,13,12).
DOF positions (0,1,2,3,4,5,6,7) in Ke-u = £, 0 i
DOF positions (6,7,8,9,14,15,13,12) in K-u =f. ulgy U?v ugy
T 0 T 2 T 4
®— Ly *—Lljy ®— Ligy

// place klocal in K matrix

for(il=0;il<8;il++) // go through rows in klocal
for(j1=0;j1<8;jl++) // go through columns in klocal
{

value = Ef¥*klocal[il][jl];
ig = topv[il]; // row in K
jg =topv[jl]; // column in K

if(jg==ig) // if on diagonal
kval[10*ig] += value;

if(jg>ig) // if right of diagonal
{
lim = 10*ig+kcol[10*ig];

// check if there was already a nonzero on K(ig,jg)
alreadynonzero = FALSE;
for(a=10*ig+1;a<lim;a++) / go over ig-th row of K

if(kcol[a]==jg) // if storage for jg-th column of K
{

alreadynonzero = TRUE;
b=a;

}

if(alreadynonzero) // if already a nonzero on K(ig,jg)
kval[b] += value; // add klocal(il,jl)

else // if nothing on K(ig,jg)
{
b = lim;
keol[b] = jg; // make storage for jg-th column of K
kval[b] = value; // add klocal(il,jl)
keol[10*ig]++;

}
} //endfor go through klocal
} //endif relevant element
} // endfor go though elements
printf("\nASSEMBLY COMPLETED");

Reducing K

We will remove some degrees of freedom from K-u = f . These are the restricted DOFs. In the function
set_restrictions() as given below, all boundary nodes are fixed, but this can of course be varied depending on
what is desired for the simulation.

set_restrictions(pn);

void set_restrictions(NOD* pn)

{

int n, nx, ny;

for(ny=0; ny<NNY; ny++)
for(nx=0; nx<NNX; nx-++)

{
n =nx + ny*NNX;

i{f((nX:O)\ |(nx==NNX-1)]|(ny==0)[|(ny==NNY-1))

pn[n].restrictx=TRUE;
pn[n].restricty=TRUE;

We keep track of DOFs in the array dofpos. In dofpos, each array element stands for a DOF. DOFs that are
restricted get a -1, while the remaining DOFs get a number from 0 upwards:

dofpos = calloc(NDOF,sizeof(int));
nrrdof = arrange_dofpos(dofpos, pn);

int arrange_dofpos(int* dofpos, NOD* pn)
{

int n, cnt;

for(n=0,cnt=0;n<NN;n++)
{
if(pn[n].restrictx)
dofpos[2*n] =-1;
else
dofpos[2*n] = cnt++;

if(pn[n].restricty)
dofpos[2*n+1] =-1;
else
dofpos[2*n+1] = cnt++;
}

return cnt;

For all DOFs with a -1, we now need to remove the row and column from K.

reduce_K(kcol, kval, dofpos);

void reduce_K(int* kcol, double* kval, int* dofpos)
{
int ro, co; // old row and column in K
int rn, cn; // new row and column in K
int a, lim, shift;

for(ro=0;r0<NDOF;ro++)
{
rm = dofpos[ro];
if(rn>-1) // if this row is not to be removed

{

lim = 10*ro+kcol[10*ro];

// change column indices for this row:
for(a=10*ro+1;a<lim;a++)

{

co = kcol[a]; // old column index

cn = dofpos[co]; // new column index

keol[a] = cn; // give new column index (some get -1)
)

// remove columns with -1 index
shift = 0;

for(a=10*ro+1;a<lim;a++)
{
keol[a-shift] = kcol[a];
kval[a-shift] = kval[a];
if(kcol[a]==-1)
shift++;

)
keol[10*ro] = kcol[10*ro]-shift;

// shift row itself

for(a=0;a<10;a++)

{
kcol[10*rn+a] = kcol[10*ro+a];
kval[10*rn+a] = kval[10*ro+a];

Vectors u and f

Before we can start to solve the system K-u = f | we must initialize the vectors u and f. The vector f is a known
vector of forces. In the set_forces() and cell forces() functions, forces in x- and y- direction were placed on
nodes as pn[n].fx and pn[n].fy. For all unrestricted DOFs of ‘relevant’ nodes we now take the corresponding
forces and place them in f.

f=calloc(nrrdof,sizeof(double)); place_node forces_in_f(pn,f);

void place_node_forces_in f(NOD* pn, double* f)
{

int n, cnt;

for(n=0,cnt=0; n<NN; n++)
{
if(!pn[n].restrictx)
flent++]=pn[n].fx;
if(!pn[n].restricty)
flent++]=pn[n].fy;

The vector u is an unknown vector of displacements. This is what we need to calculate. However, we will start
our calculation (see next section) with an estimate of these displacements. The displacements of the previous
increments make a good estimate for the displacements in this increment.

u=calloc(nrrdof,sizeof(double)); set_disp_of prev_incr(pn,u);

void set_disp_of prev_inct(NOD* pn, double* u)
{

int n, cnt;
for(n=0,cnt=0; n<NN; n++)
if(pn[n].relevant)
if(!pn[n].restrictx)
u[cnt++]=pn[n].ux;

if(!pn[n].restricty)
u[cnt++]=pn[n].uy;

Preconditioned Conjugate Gradient (PCG) Method
We want to solve the following system:

K-u=f

where f is a known vector of forces and u is an unknown vector of displacements. We take the diagonal of K to
make a matrix C:

Ky if i=j

v 0 else

Let uy be an initial vector, the PCG algorithm (www.math-linux.com/spip.php?article55) is as follows:

r,=f-K-u, « residual
-1
2,=C 1,
Py, =%, < conjugate direction in which minimal error is expected
repeat
p; = Z[T I < residual error
q, = K P
o, = T"; <« stepsize
P; 4;
u, =u, +aop, < new estimate
r, =r,.—a.q; < new residual

-1
Z,,= g T
= ZT ‘T < new residual error
Pix i+ i

if pi+; is “sufficiently small’ then exit loop end if

ﬁ _ pi+1
=0l
Pi
P =2, +5Pp; < new conjugate direction
i=i+1
end repeat

The result is ;4

solvePCG(kcol,kval,u,f,nrrdof);

void solvePCG(int* kcol, double* kval, double* u, double* f, int nrrdof)
{

int i, a, iter;

double *ui, *ri, *diag, *invC, *zi, *pi, *qi;

double rhoi, rhoinew, initrho;

double beti, alfi, pq;

ui = calloc(nrrdof, sizeof(double)); for(i=0;i<nrrdof;i++){ui[i]=u[i];}
ri = calloc(nrrdof, sizeof(double));

diag = calloc(nrrdof, sizeof(double));

invC = calloc(nrrdof, sizeof(double));

zi = calloc(nrrdof, sizeof(double));

pi = calloc(nrrdof, sizeof(double));

qi = calloc(nrrdof, sizeof(double));

for(i=0;i<nrrdof;i++)
diag[i] = kval[10*i];

for(i=0;i<nrrdof;i++) // for each row in K

{

if(diag[i] != 0.0) // if Kii not zero
invC[i] = 1.0/diag][i];
else
invC[i] = 0.0;
}

calc_Kdotx(kcol,kval,diag,ui,qi,nrrdof);

// invC = inv(diag(K))

void calc_Kdotx(int* kcol, double* kval, double* diag, double* x, double* b, int nrrdof)

{
intr, a, lim;
for(r=0;r<nrrdof;r++)
b[r] = diag[r]*x[r];
for(r=0;r<nrrdof;r++)
{
lim = 10*r+kcol[10*r];
for(a=10*r+1;a<lim;a++)
{
b[r]+=kval[a]*x[kcol[a]];
b[kcol[a]]+=kval[a]*x[r];
}
}
H

for(i=0;i<nrrdof;i++)

ri[i]=fTi]-qii];
for(i=0;i<nrrdof;i++)

zi[i] = invC[i]*ri[i];
for(i=0;i<nrrdof;i++)

pifi]=zi[i];
for(i=0,rhoinew=.0;i<nrrdof;i++)

rhoinew += ri[i]*zi[i];
for(i=0,initrho=.0;i<nrrdof;i++)

initrho += invC[i]*{[i]*f[i];

// start iterative solve
for(iter=0; (rthoinew>ACCURACY *initrho); iter++)
{

rhoi = rhoinew;

calc_Kdotx(kcol,kval,diag, pi, qi, nrrdof);

for(i=0,pq=0;i<nrrdof;i++)
pa+=pi[il*qi[i];

alfi = rhoi/pq;

for(i=0;i<nrrdof;i++)
ui[i]+=alfi*pi[i];

for(i=0;i<nrrdof;i++)
ri[i]-=alfi*qi[i];

for(i=0;i<nrrdof;i++)
zi[i] = invC[i]*ri[i];

for(i=0,rhoinew=.0;i<nrrdof;i++)
rhoinew-+=ri[i]*zi[i];

beti=rhoinew/rhoi;

for(i=0;i<nrrdof;i++)
pi[i] = zi[i] + pi[i]*beti;

if(iter%10==0)

// r0 = f-K*u0

// 20 = inv(C)*r0

// p0 = z0

// rhoi = zi*ri

// FOR ACCURACY

// qi = K*pi

// alfi = rhoi/(pi*qi)

/[uit1 = uit+alfi*pi

// ti+1 = ri-alfi*qi

/] zi+1 = inv(C)*ri+1

// thoi+1 = ri+1*zi+1

// beti = rthoinew/rhoi

/I pi+1 = zi+1 + betai*pi

printf("\ni %4d, rhoinew/initrho=%18.111f",iter, rhoinew/initrho);

}

printf("\n Stop iterating at iter %d", iter);

for(i=0;i<nrrdof;i++)
ulil=uili];

free(ui);free(ri);free(diag); free(invC);free(zi); free(pi); free(qi);

Now that the displacements u are calculated, they are assigned to the corresponding nodes:

disp_to nodes(pn, u);

void disp_to_nodes(NOD* pn, double* u)
{

int n, cnt;

for(n=0,cnt=0; n<NN; n++)
{
pn[n].ux=.0;
pn[n].uy=.0;
if(!pn[n].restrictx)
pn[n].ux=u[cnt++];
if(!pn[n].restricty)
pn[n].uy=u[cnt++];

Cellular Potts Model part

Each element has a label ctag, which identifies the occupying cell (it is 0 for medium). I had thought of defining
separate CELL structures to keep track of cell information (such as size, center of mass, type), but at the moment
the only information I needed to record of cells is their size, which is stored in the array csize.

In each Monte Carlo Step (time increment) the function CPM_moves() makes a NRsteps number of copy
attempts, which equals the number of elements NV. For each copy attempt a target pixel x¢ is chosen at random,
and a source pixel xs from one of its 8 neighbors (Moore neighborhood). At the selection of the target pixel we
exclude the outer rim of the domain. This is done for computational efficiency, so we don't have to consider
whether we're hitting the domain boundary during other CPM operations.

Once x¢ and xs have been chosen, we check if they have different ctags. Then we check whether a move violates
the connectivity constraint, via the function splitcheck() *. If not, we continue to calculate the cost of the move
dH via the function calc_dH() **. Then the probability of the move follows:

1 if AH <0

P(aH)= e MITEAH >0

If this exceeds a random value between 0 and 1 (rand()/(double)RAND_MAX) we make the move and update the sizes
of the partaking cells.

CPM_moves(pv,pn,csize);

void CPM_moves(VOX* pv, NOD* pn, int* csize)
// cellular potts model: one Monte Carlo step
{
int i,NRsteps = NV;
int xs, xt; // source and target pixel
int xtx,xty; // x and y position of target pixel
int ttag, stag; // target and source label
int nbs[8],pick; // neighbors of target pixel
BOOL go_on;
double dH, prob;

for(i=0;i<NRsteps;i++)
{

//xt = (rand()*NV/RAND_MAX); // pick random element
xt = mt_random()%NV; // pick random element
xty = xt/NVX; xtx = xt%NVX;

if(xtx>0)& & (xtx<NVX-1)&&(xty>0)& & (xty<NVY-1)) // exclude outer rim
{

nbs[0]=xt-1+NVX; nbs[1]=xt+NVX; nbs[2]=xt+1+NVX;
nbs[7]=xt-1; nbs[3]=xt+1;
nbs[6]=xt-1-NVX; nbs[S5]=xt-NVX; nbs[4]=xt+1-NVX;
pick = mt_random()%8;

xs = nbs[pick]; // pick random neighbor

ttag = pv[xt].ctag;
stag = pv[xs].ctag;

go _on=0;
if(ttag!=stag) //don't bother if no difference

go on=1;
if(ttag) // if a cell in xt (retracting)

if (splitcheckCCR(pv,csize,xt,ttag))

go _on=0;

if(csize[ttag-1]==1) // cell cannot disappear (constraint may be removed)
go _on=0;

}
if(go_on)

dH = calcdH(pv,pn,csize,xt,xs,pick,ttag,stag);
prob = exp(-IMMOTILITY *dH);

if (prob>(rand()/(double)RAND MAX))

{

pv[xt].ctag = stag; // a move is made
if(ttag) {csize[ttag-1]--;}
if(stag) {csize[stag-1]++;}

* In the splitcheck() function we first make a round through the neighbor pixels of xt, to see how often we go in
and out of the cell retracting from xt. If we entered the cell only once, the retraction will not split the cell. If
more than once, there may be a split, and we check this with an adapted Connected Component Algorithm
(CCA).

** In the calc_dH() function we calculate the various terms of the cost function. Here we consider three terms,
an adhesion term, a volume term, and a strain-based term:

AH=AH_, . +AH +AH

volume strain

The adhesion term is based on the contact costs in the domain
Hwntact = Z']x,x'
X,x'

where J,, is the contact cost between two neighboring pixels (these can be found in def.h, and are corrected for
pixel size). To calculate dHcontact we don't need to consider the whole domain but merely the changing contact
costs between the target pixel and its neighbors.

The volume term is based on cellsizes:

2
a—A
Hvolume = 2 /1 A
cells

It ensures that cell volume a (number of occupied pixels) remains close to a target volume 4, where 4 sets the
strength of this constraint.

We interpret stretch guidance as a preference for higher stiffness on a on a strain-stiffening substrate. We
implement this by subtracting (for extensions) or adding (for retractions) an extra term to AH at the time of
copying:

AHstmin :f(E(gl))(Vl Vo)2 +f(E(€2))(Vz "V)2'

This function contains three elements, a preference for higher stiffness, strain stiffening, and the orientation of
stretch, which we will specify in detail below.

A preference for higher stiffness is apparent in durotaxis, the migration of cells up gradients in substrate rigidity,
and in the increased cell spreading on stiffer substrates . We implement this preference for higher stiffness £ via
the function f(E). This function starts at zero, goes up when there is sufficient stiffness, and eventually reaches a
maximum. This means that a certain level of stiffness is needed to cause a cell to spread, but this spreading has a
maximum. We use a sigmoid function to capture these assumptions:

S e C AE-E,))

where « sets the maximum value for AH,,;,, E,, is the stiffness at which half this value is reached, and 8
determines the steepness of the curve. By subtracting (for extensions) or adding (for retractions) f(E) from the
movement cost AH in the CPM, it becomes easier for a cell to crawl up and hold onto the substrates with
increasing stiffness.

J(E

/(E)

o

E E

r

Strain stiffening is a feature of many fibrous tissues. Several authors have previously suggested that cell-cell
communication and alignment result from a preference for higher substrate resistance in combination with strain
stiffening . In this interpretation a cell crawls up a stretch line, not because of the stretch itself, but because of the
increased resistance of the stretched substrate. In our model the stiffness perceived by the cell increases with
stretch (€>0):

E(e)=E,(1+¢/e,)

where E, sets a base stiffness for the substrate, and &, determines how fast the substrate stiffens with stretch. It
should be noted here that due to limitations of our current finite element code, we did not assume strain
stiffening in the strain calculations, only in the cell response.

Stretch has an orientation. From our FE calculations we can calculate the strain tensor at the center of each
element. Its eigenvalues ¢; and ¢, and eigenvectors v; and v, give us the maximum and minimum stretch
(principal strains) and their respective orientations within the element. When a cell extends towards or retracts
from the element, it does so with an orientation, given by a unit vector v,, between x and x'. The dot products of
this move vector with the principal strain vectors indicates if the move falls along the stretch. These are added
into the equation for AHy,,;,, so that a move v,, perpendicular to a stretch orientation v; is not affected by it. Note
that if the substrate is isotropically stretched (¢;=¢5), AH;qin 1s equal for moves in all directions.

double calcdHstrain(NOD#* pn, int xt, int xs, int pick, int ttag, int stag)
{

double dHstrain;

double q,vmx[8],vmy[8],vm[2];

double estrains[3],L1,1.2,v1[2],v2[2];

double vmv1,vmv2;

dHstrain = 0;

// unitvectors for move: vim
q=5Q05;

vmx[0]=-q; vmx[1]= 0; vinx[2]= q;
vmx[7]=-1; vmx[3]=1;
vmx[6]=-q; vmx[5]= 0; vinx[4]= q;

vmy[0]= q; vmy[1]= 1; vimy[2]= g;
vmy[7]=0; vmy[3]= 0;
vmy[6]=-q; vmy[5]=-1; vmy[4]=-q;

vm[0] = vmx[pick];
vm[1] = vmy][pick];

if(stag) // expansion

get_estrains(pn,xt,estrains);
L1=L2=.0; get princs(estrains,&L1,&L2,v1,v2,1);

// inproducts of move vector with pr. strain vectors
vmv1l = vm[0]*v1[0]+vm[1]*V1[1];
vmv2 = vm[0]*v2[0]+vm[1]*v2[1];

El = YOUNGS; if(L1>0) {E1*=(1+L1/STIFFENINGSTIFF);}
E2 = YOUNGS; if(L2>0) {E2*=(1+L2/STIFFENINGSTIFF);}
dHstrain -= sige(E1)*vmv1*vmvl + sige(E2)*vmv2*vmv2;

if(ttag) // retraction

get_estrains(pn,xs,estrains);
L1=L2=.0; get princs(estrains,&L1,&L2,v1,v2,1);

// inproducts of move vector with pr. strain vectors
vmv1l = vm[0]*v1[0]+vm[1]*V1[1];
vmv2 = vm[0]*v2[0]+vm[1]*v2[1];

El = YOUNGS; if(L1>0) {E1*=(1+L1/STIFFENINGSTIFF);}
E2 = YOUNGS; if(L2>0) {E2*=(1+L2/STIFFENINGSTIFF);}
dHstrain += sige(E1l)*vmv1*vmvl + sige(E2)*vmv2*vmv2;

}

return dHstrain;

Cell traction model

Cell traction is modeled according to a recent study by Lemmon & Romer (2), who found that traction force
direction, relative magnitude, and force distribution within the cell can be accurately predicted using only cell
shape as input. They consider every point under the cell connected to every other point via the cytoskeleton.
Each node i pulls on all other nodes j, with a force proportional to distance d,;, such that the resultant force on
node i is:

F=p)d,
j

where u gives the tension per unit length (parameter CELLFORCE).

cell_forces(pv,pn,csize,NRc);

void cell_forces(VOX* pv, NOD* pn, int* csize, int NRc)
{

int c;

int n,nx,ny;

int v,vx,vy, cnttag;
int NRcelln,cellnodes[NN];
int i,j, n2;
double dnx,dny,forcex,forcey;
for(ny=1; ny<NNY-1; ny++)
for(nx=1; nx<NNX-1; nx++)
{
n =nx + ny*NNX;
pn[n].fx = 0;
pn[n].fy = 0;
}
for(c=0;c<NRc;c++)
{
// determine which nodes belong to cell ¢
NRcelln = 0;
for(ny=1; ny<NNY-1; ny++)
for(nx=1; nx<NNX-1; nx++)
{
n = nx + ny*NNX;
cnttag = 0;
for(vy=ny-1; vy<ny+1; vy++)
for(vx=nx-1; vx<nx+1; vx++)
{
v =Vx + vy*NVX;
if(pv[v].ctag == c+1)
cnttag++;
}
if(cnttag>0) // all cell nodes
cellnodes[NRcelln] = n;
NRcelln++;
}
}
// forces between cellnodes
for(i=0;i<NRcelln;i++)
{
n = cellnodes][i];
ny=n/NNX; nx=n%NNX;
for(j=0;j<NRcelln;j++)
{
n2 = cellnodes[j];
dny=(n2/NNX-ny)*VOXSIZE; // y distance between n and n2
dnx=(n2%NNX-nx)*VOXSIZE; // x distance between n and n2
forcex = CELLFORCE*dnx;
forcey = CELLFORCE*dny;
pn[n].fx += forcex;
pn[n].fy += forcey;
}
}
}
!

Output and visualization

The program outputs a number of .out files, for instance ctags#.out which gives the occupying cell per element in
the #th time increment, and pstrain#.out which gives the principal strains per element. These were written with
the functions write cells() and write pstrain(), but there are also functions available to write the nodal forces and
displacements.

Visualization of the output is done in MATLAB. I have added the .m files makemovie.m and jet2.m, which
should be placed in MATLAB's working directory. jet2 provides an extra colorscheme, and does nothing further.
Makemovie.m will make pictures of the output of different increments, and join them into one movie at the end.
Make sure that the path where it can find the output, as well as the grid size and number of increments in
makemovie correspond to your simulation. Type 'makemovie' in MATLAB to use makemovie.m.

For moviemaking MATLAB takes screenshots of the figures with the getframe command. A drawback of this is
that figures need to remain in the foreground. It then puts these screenshots into one .avi with the movie2avi
command. In this command the compression codec can be listed. For instance I use the Cinepak codec:
‘compression','Cinepak'. On UNIX systems these are not available and one has to specify "None'.

For some reason the .avi movies made with MATLAB will show some noise when used in a .ppt. I have been
able to get around this by re-encoding the .avi in VirtualDub.

SUPPORTING REFERENCES

1. Aratyn-Schaus, Y., Oakes, P. W., & Gardel, M. L. (2011). Dynamic and structural signatures of
lamellar actomyosin force generation. Mol Biol Cell, 22, 1330-1339.

2. Lemmon, C. A. & Romer, L. H. (2010). A predictive model of cell traction forces based on cell
Geometry. Biophys. J., 99, L78-L80.

3. Baaijens F. Numerical analysis of continua - lecture notes. Technical report, Eindhoven University of
Technology, NL-5600MB, Eindhoven, 2004.

