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Abstract

Circulating levels of both seasonal and pandemic influenza require constant surveillance to ensure the health and safety of
the population. While up-to-date information is critical, traditional surveillance systems can have data availability lags of up
to two weeks. We introduce a novel method of estimating, in near-real time, the level of influenza-like illness (ILI) in the
United States (US) by monitoring the rate of particular Wikipedia article views on a daily basis. We calculated the number of
times certain influenza- or health-related Wikipedia articles were accessed each day between December 2007 and August
2013 and compared these data to official ILI activity levels provided by the Centers for Disease Control and Prevention
(CDC). We developed a Poisson model that accurately estimates the level of ILI activity in the American population, up to
two weeks ahead of the CDC, with an absolute average difference between the two estimates of just 0.27% over 294 weeks
of data. Wikipedia-derived ILI models performed well through both abnormally high media coverage events (such as during
the 2009 H1N1 pandemic) as well as unusually severe influenza seasons (such as the 2012–2013 influenza season). Wikipedia
usage accurately estimated the week of peak ILI activity 17% more often than Google Flu Trends data and was often more
accurate in its measure of ILI intensity. With further study, this method could potentially be implemented for continuous
monitoring of ILI activity in the US and to provide support for traditional influenza surveillance tools.
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Introduction

Each year, there are an estimated 250,000–500,000 deaths

worldwide that are attributed to seasonal influenza [1], with

anywhere between 3,000–50,000 deaths occurring in the United

States of America (US) [2]. In the US, the Centers for Disease

Control and Prevention (CDC) continuously monitors the level of

influenza-like illness (ILI) circulating in the population by

gathering information from sentinel programs which include

virologic data as well as clinical data, such as physicians who

report on the percentage of patients seen who are exhibiting

influenza-like illness [2]. While the CDC ILI data is considered to

be a useful indicator of influenza activity, its availability has a

known lag-time of between 7–14 days, meaning that by the time

the data is available, the information is already 1–2 weeks old. To

appropriately distribute vaccines, staff, and other healthcare

commodities, it is critical to have up-to-date information about

the prevalence of ILI in a population.

There have been several attempts at gathering non-traditional,

digital information to be used to predict the current or future levels

of ILI, and other diseases, in a population [3–11]. The most

notable of these attempts to date has been Google Flu Trends

(GFT), a proprietary system designed by Google, which uses

Google search terms that are correlated with ILI activity in the US

to make a estimation of the current level of ILI [12]. Google Flu

Trends was initially quite successful in its estimation of ILI activity,

but was shown to falter in the face of the 2009 H1N1 swine

influenza pandemic (pH1N1) due to much-increased levels of

media attention surrounding the pandemic [13]. Similarly, GFT

greatly over-estimated ILI activity in the 2012–2013 influenza

season, again likely due to that fact that it was a more severe

influenza season than normally observed and therefore garnered

much media attention [14]. In the face of these obstacles, Google

has continued to update and re-evaluate its models [15–17].

Although GFT has performed well in the past, with the

exception of two high ILI activity time periods, new methods

of estimating current ILI activity that are less susceptible to

error in the face of media coverage should be sought.

Additionally, as the global community continues to become

increasingly in favor of open-access data and methods [18],

new methods of ILI estimation should be freely available for

everyone to investigate and improve upon, unlike GFT, which

does not share the search terms it uses in its algorithms (though

results are public).

To this end, we have created a method of estimating current ILI

activity in the US by gathering information on the number of

times particular Wikipedia articles have been viewed. Wikipedia is

a massive, user-regulated, online encyclopedia. Launched in 2001,

Wikipedia harnesses the power of the online community to create,

edit, and modify encyclopedia-like articles that are then freely

available to the entire world. Currently operating in 232

languages, Wikipedia has ,30 million articles available, expand-

ing at approximately 17,800 articles per day, with nearly 506

million visitors per month, representing 27 billion total page views
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since its launch, and has approximately 31,000 active Wikipedia

editors (http://stats.wikimedia.org) [19].

With a wealth of detailed information on an almost limitless

range of topics, Wikipedia is ideally suited as a platform that

could potentially be of use for legitimate scientific investigation

in many different areas. Not only is the information held

within Wikipedia articles very useful on its own, but statistics

and trends surrounding the amount of usage of particular

articles, frequency of article edits, region specific statistics, and

countless other factors make the Wikipedia environment an

area of interest for researchers. It has previously been shown

that Wikipedia can be a useful tool to monitor the emergence

of breaking news stories, to track what topics are ‘‘trending’’ in

the public sphere, and to develop tools for natural language

processing [20–23]. Furthermore, Wikipedia makes all of this

information public and freely available, greatly increasing and

expediting any potential research studies that aim to make use

of their data.

The purpose of this study was to develop a statistical model to

provide near real-time estimates of ILI activity in the US using

freely available data gathered from the online encyclopedia,

Wikipedia.

Methods

Wikipedia Articles of Consideration
In an attempt to use Wikipedia data to estimate ILI activity in

the US, we compiled a list of Wikipedia articles that were likely to

be related to influenza, influenza-like activity, or to health in

general. These articles were selected based on previous knowledge

of the subject area, previously published materials, and expert

opinion. In addition to articles that were potentially related to ILI

activity, several articles were selected to act as markers for general

background-level activity of normal usage of Wikipedia. For

example, information was gathered on the number of times the

Wikipedia main page (www.en.wikipedia.org/wiki/Main_page)

was accessed per day, as a measure of normal website traffic. As

well, the Wikipedia article for the European Centers for Disease

Control was included in models in an attempt to control for non-

American article views. Table 1 displays the Wikipedia articles

that were considered for inclusion in our models.

Wikipedia article view information is made freely available

by Wikipedia, under a project called Wikimedia Statistics

(http://en.wikipedia.org/wiki/Wikipedia:Statistics), and is

available as the number of article views per hour, which may

include multiple views on the same article by the same user. A

freely available, user-written tool was independently developed

to more easily access the information that Wikipedia makes

available (http://stats.grok.se), which aggregates article view

data to the day-level, and this tool was used to gather total

daily article view information. Daily Wikipedia article view

data was retrospectively collected beginning at the earliest

available date, December 10, 2007, through to August 19th,

2013, and then aggregated to the week level, with each week

beginning on Sunday.

CDC and GFT Data
The CDC compiles data on the weekly level of ILI activity in

the United States by collecting information from sentinel sites

across the country where physicians report on the number of

patients with influenza-like illness. CDC ILI data is freely available

through ILInet, via the online FluView tool (www.cdc.gov/flu/

weekly), and downloadable as week-level data. Google Flu Trends

data is also freely available through the Google Flu Trends website

(http://www.google.org/flutrends) and is provided weekly at the

country and state level. GFT data is the result of Google’s

proprietary algorithm that uses Google search queries to estimate

the level of ILI activity in a given region.

Data Collection
We gathered Wikipedia article view data beginning from the

week of December 10th, 2007, the earliest records available, until

August 19th, 2013. Accordingly, retrospective CDC ILI data and

GFT data was obtained for the same period as the Wikipedia

article view information, although both the CDC and GFT data

extends much further back in time. When aggregated to week-

level, all data sources accounted for 296 weeks of retrospective

information, capturing five full influenza seasons as well as partial

2007–2008 data. Due to a lapse in the Wikipedia database, article

view information is not available between July 13th and July 31st,

2008, inclusive. Therefore, the total set of data available accounts

for 294 weeks.

Influenza-Like Illness Modeling
Models to estimate ILI activity using Wikipedia article view

information were developed using a generalized linear model

framework. The outcome variable, age-weighted CDC ILI

activity, is a proportion and is therefore appropriately modeled

using a Poisson distribution, and so the Poisson family was used in

the GLM framework, with a log-link function. In an attempt to

adjust for potential over-fitting, models were run using jackknife

resampling. Two principle models were created, which include Mf,

a Poisson model that used the full set of collected Wikipedia article

page view data, and Ml, a Poisson model that used Lasso (Least

Absolute Shrinkage and Selection Operator) regression analysis.

Lasso regression dynamically and automatically selects predictor

variables for inclusion or exclusion by penalizing the absolute size

of the regression coefficients toward zero, thereby selecting a

subset of predictor variables which best describe the outcome data

[24,25]. To investigate the reliability of the models, we used a split-

sample analysis on the Ml models to compare how well the Lasso

selected predictors for a subset of the data (including years 2007,

Author Summary

Although influenza is largely avoidable through vaccina-
tion, between 3,000–50,000 deaths occur in the United
States each year that are attributed to this disease. The
Centers for Disease Control and Prevention continuously
monitor the amount of influenza that is present in the
American population and compiles this information in
weekly reports. However, because it can take a long time
to collect and analyze all of this information, the data that
is being reported each week is typically between 1–2
weeks old at the time of publishing. For this reason, we are
interested in developing new techniques to determine the
amount of influenza in the population that are accurate,
can return results in real-time, and can be used to
supplement traditional monitoring. We have created a
method of estimating the amount of influenza-like illness
in the American population, at any time of year, by
analyzing the amount of Internet traffic seen on certain
influenza-related Wikipedia articles. This method is able to
accurately estimate the percentage of Americans with
influenza-like illness, in real-time, and is robust to influenza
seasons that are more severe than normal and to events
that promote much media attention, such as the H1N1
pandemic in 2009.
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2008, 2009, and 2010) accounted for the observed data in the

remaining subset (years 2011, 2012, and 2013).

Additionally, each of these aforementioned models were also

run while excluding data at key time periods which reflect

higher than normal ILI activity or Wikipedia article view

traffic (during the early weeks of the 2009 pandemic H1N1

swine influenza pandemic and the unusually severe influenza

season of 2012–2013) as a means of investigating the models’

ability to deal with large data spikes. By comparing the models

with or without higher than normal Wikipedia usage, we can

investigate what impact, if any, spikes in Wikipedia activity

(potentially caused by increased media reporting of influenza-

related events) have on the accuracy of the models, and

whether or not these spikes in traffic need to be accounted for.

In addition to a factor variable representing the year being

included in the models, the month was also controlled for in an

effort to adjust for the seasonal patterns that influenza

outbreaks exhibit in the United States. All models were

investigated for appropriate fit using the Pregibon’s good-

ness-of-link test [26] and by examining Anscombe and

deviance residuals. Models were compared to one another by

comparing Akaike’s Information Criteria, response statistics,

and by performing likelihood-ratio tests on the maximum-

likelihood values of each model. Goodness-of-fit (GOF) tests,

both Pearson and deviance, were tested for; all presented

models had GOFs&0.05. All statistics and models were

performed using Stata 12 (Statacorp., College Station, Texas,

US).

Results

Across the 294 weeks of data available, the number of views of

each Wikipedia article under consideration showed large

variability. As an example of this variation, the mean number

of daily views of the ‘‘Influenza’’ article was 30,823, but the total

number of views ranged from 3,001–334,016 per day. Some of

the articles under investigation had relatively few views, such as

‘‘influenza-like illness’’ with a mean of 1,061 article views per day

(range: 0–15,629 views per day), while others had very high

numbers of views per day, such as the Wikipedia Main Page,

which had a mean of 44 million views per day (range: 7–139

million views per day).

Herein, we will discuss the characteristics of several models in

an attempt to use Wikipedia article view information to estimate

nationwide ILI activity based on CDC data. We consider a full

model (Mf) that includes all dependent variables that were

investigated and a Lasso-selected model (Ml) that includes only

dependent variables chosen as significant by the Lasso regression

method.

Full-Data Models
The Mf model, containing all 35 predictor variables (including

year, month, CDC page views, ECDC page views, and Wikipedia

Main Page views) and 294 weeks of data, resulted in a Poisson

model with an AIC value of 2.795. Deviance residuals for this

model ranged from 20.971–1.062 (mean: 20.006) and were

approximately normally distributed. Although many of the

dependent variables showed spikes in page view activity around

the beginning of the 2009 pH1N1 event, the Mf model was able to

accurately estimate the rate of ILI activity, with a mean response

value (difference between observed and estimated ILI values) of

0.48% in 2009 between weeks 17–20, inclusive. Overall, the

absolute response values for the Mf model ranged from 0.00–

2.38% (mean: 0.27%, median: 0.16%). In comparison, the

absolute response values between CDC ILI data and GFT data

ranged from 0.00–6.04% (mean: 0.42%, median: 0.21%). The

Pearson correlation coefficient between the CDC ILI values and

the estimated values from the Mf model was 0.946 (p,0.001). The

actual observed range of ILI activity throughout the entire period

for which data is available, as reported by the CDC, was from

0.47–7.72%, with a median value of 1.40%. In comparison, the

Mf model estimated ILI activity for the same period ranged from

0.44–8.37%, with a median value of 1.50%, and the GFT ILI data

ranged from 0.60–10.56%, with a median value of 1.72%.

The Ml model, which contained 26 variables (including year,

month, and CDC page views) that were chosen as significant by

Table 1. List of Wikipedia articles selected for investigation for inclusion in ILI estimation models.

Avian influenza* Influenza Virus B*

Centers for Disease Control and Prevention* Influenza Virus C*

Common Cold* Influenza Virus Subtype H1N1

Epidemic* Influenza Virus Subtype H2N2*

European Centers for Disease Control and Prevention Influenza Virus Subtype H2N9*

Fever* Influenza Virus Subtype H3N1*

Flu Season* Influenza Virus Subtype H3N2*

Human Influenza* Influenza Virus Subtype H5N1*

Influenza Influenza Virus Subtype H5N2*

Influenza-like Illness* Oseltamivir*

Influenza Pandemic Pandemic

Influenza Research* Swine Influenza

Influenza Treatment* Tamiflu*

Influenza Vaccine* Vaccine

Influenza Virus* Wikipedia Main Page

Influenza Virus A* 1918 Flu Pandemic*

*Only terms with an asterisk were included in the Lasso regression model.
doi:10.1371/journal.pcbi.1003581.t001
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the Lasso regression method, resulted in a model with an AIC of

2.764. Deviance residuals for this model ranged from 20.790 to

1.205 (mean: 20.007) and were approximately normally distrib-

uted, though less so than in Mf. The absolute response values for

this Ml model ranged from 0.00–2.53% (mean: 0.29%, median:

0.18%). During weeks 17–20 of the 2009 pH1N1 event, the mean

response value for this model was 0.45%, suggesting it was slightly

less accurate over this unusually high article view activity time

period than the Mf model for the same period. The Pearson

correlation coefficient between CDC ILI data and the estimated

mean value for the Ml model was 0.938 (p,0.001), and the range

of estimated ILI values for this model was from 0.55–8.66%, with

a median value of 1.48%.

Split-sample analysis was used to investigate the reliability of the

Ml model. A Lasso regression model that was trained on data from

years 2007–2010, inclusive, and the selected predictor variables

were used to estimate the ILI activity for each week in the

remainder of the dataset (years 2011–2013, inclusive). The cross-

validation Pearson correlation between the actual observed CDC

ILI data and the ILI estimates provided by the Ml model based on

the first subset of data was 0.9854 (p,0.001).

Figure 1 shows the time series for CDC ILI data, GFT data, and

the estimated ILI values from both the Mf and Ml models.

Models without Peak Activity
In the following models, data from the beginning weeks of the

2009 pH1N1 event (weeks 17–20, inclusive), which showed large

spikes in Wikipedia article views due to increased media attention,

were excluded from analyses. As well, because of the higher-than-

normal influenza activity of the 2012–2013 influenza season, that

data was also removed from analyses, beginning from week 40 of

2012 to week 13 of 2013, inclusive. By running the Poisson models

without these high volume time-sections, comparisons can be

made to the full models in order to investigate the estimating

ability of models in the face of higher-than-normal levels of

influenza activity or Wikipedia article views.

When removing the above-mentioned data, the Mf model

produced an AIC value of 2.772, only marginally smaller than that

of the complete Mf model, and was comprised of 263 weeks of

data. The range of deviance residuals from this model, 20.650 to

0.891, is slightly narrower than the complete Mf model, suggesting

a better fit. For the truncated Lasso model, the Poisson regression

model was refit to only include the available data, and therefore

produced a different set of 24 predictor variables. From this model,

an AIC value of 2.727 was obtained, with a range of deviance

residuals from 20.677 to 1.081, a marginal narrowing over the

original Ml model. Pearson correlation coefficient values between

CDC ILI data and estimated values by the Mf and Ml models, for

peak-truncated data, were 0.958 (p,0.001) and 0.942 (p,0.001),

respectively.

Peak Influenza-Like Illness Estimation
In the United States, seasonal influenza activity usually peaks

during January or February. Using the maximum value of the

CDC ILI data in a single influenza season as the true peak time

and value, we compared the peak value and week for influenza

activity as estimated by our two models, Mf and Ml, as well as the

Google Flu Trends data. Results are summarized by model and by

year in Table 2.

The Mf model was able to accurately estimate the ILI activity

peak in 3 of 6 influenza seasons for which data is available (2009–

2010, 2010–2011 and 2012–2013 seasons), and was within one

week of an accurate estimation in another season (2007–2008).

The Ml model accurately estimated the ILI peak activity week in 2

of 6 seasons (2007–2008 and 2010–2011), and estimated 2 others

within a week (2009–2010 and 2012–2013). In comparison,

Google Flu Trends data was able to accurately estimate peaks of

seasonal ILI activity in 2 of 6 influenza seasons (2009–2010 and

2010–2011 season), and was accurate within one week in 2 other

influenza season (2007–2008 and 2008–2009). It should be noted

that in the 2010–2011 season, the CDC data peaked at the same

ILI percentage at both week 4 and week 6 in 2011, and week 6 was

taken to be the true peak, as it agreed with both Wikipedia models

and the GFT data. In the 2011–2012 season, the Mf and Ml

models were 3 weeks early in their estimation of peak ILI activity

and the GFT data was 10 weeks early. Finally, in the 2012–2013

influenza season, the GFT model was 3 weeks late and grossly

over-estimated the severity by greater than 2.3-times.

Discussion

Weekly ILI values based on Wikipedia article view counts were

able to estimate US ILI activity within a reasonable range of error,

with CDC data as the gold standard. While the CDC ILI data is

routinely used as a gold standard, and is most often the best

available source of ILI information for the country, this data

source has potential biases of its own. There are over 2,900

outpatient healthcare providers that are registered participants of

the CDC’s ILI surveillance program, but in any given week, only

approximately 1,800 provide ILI surveillance data [27]. As well,

the population size/density of the area served by each outpatient

healthcare provider is not uniform across locations and may lead

to a skew in reporting. Additionally, increased media coverage of

influenza may prompt healthcare providers to submit more

samples for analysis or to report more potential ILI cases than

they may have otherwise. Several models were fit to estimate ILI

activity, including a model containing all 32 health-related

Wikipedia articles investigated, a Lasso regression model which

selected 24 health-related Wikipedia articles of significance, and

each of these models were run without high media-awareness time

periods representing the beginning of the H1N1 pandemic in

spring of 2009 and the higher-than-normal ILI rates of the 2012–

2013 influenza season. These models were compared to official

CDC ILI values as well as GFT data.

Comparing the Mf and Ml models, the AIC value was slightly

smaller for the Ml model, as was its range of estimation residuals.

With a highly non-significant likelihood ratio test between the two

models, there is no evidence to suggest that the Mf model performs

better than the Ml model, which may be preferred here. However,

since there is no cost or energy associated with collecting

additional variable information, the full model may warrant

continued use to account for the potential event where more

health-related Wikipedia articles become useful in ILI estimation.

Mf and Ml models that did not include data for the 2009 spring

pH1N1 season and the 2011–2012 peak season resulted in slightly

smaller AIC and residual values compared to their full-data

counterparts, but did not show large enough improvements in

estimates to suggest that higher than normal Wikipedia page view

traffic or ILI activity were major factors in the models’ ability to

estimate ILI activity. This result exemplifies the Wikipedia model’s

ability to perform well in the face of increased media attention and

higher than normal levels of ILI activity, whereas GFT has been

shown on several occasions to be highly susceptible to these types

of perturbations.

In comparison to GFT data, there are some areas where the

Wikipedia models were superior, but others where they were not.

Full Wikipedia models were able to estimate the week of peak

activity within a season more often than GFT data. Out of the 6
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seasons for which data was available, GFT estimated a value of ILI

that was more accurate (regardless of whether or not the peak

timing was correct) than the Mf or Ml models in 4 seasons, while

the Wikipedia models were more accurate in the remaining 2.

These analyses and comparisons were carried out on GFT data

that was retrospectively adjusted by Google after large discrepan-

cies between its estimates and CDC ILI data were found after the

2012–2013 influenza season, which was more severe than normal.

Even with this retrospective adjustment in GFT model parame-

ters, the peak value estimated by GFT for the 2012–2013 is more

than 2.3-times exaggerated (6.04%) compared to CDC data, and

was also estimated to be 4 weeks later than it actually was. For this

same period, the Mf model was able to accurately estimate the

timing of the peak, and its estimation was within 0.76% compared

to the CDC data.

This study is unique in that it is the first scientific investigation,

to the authors’ knowledge, into the harnessing of Wikipedia usage

data over time to estimate the burden of disease in a population.

While Google keeps GFT model parameters confidential, the

Wikipedia article utilization data in these analyses are freely

available and are open to be modified and improved upon by

anyone. Although it has not been investigated here, there is

Table 2. Comparisons of CDC, Mf, Ml, and GFT peak ILI values.

Influenza Season Year Week ILI Value Referent CDC ILI Value* % Difference from CDC ILI Value Peak Agrees with CDC

2007–2008

CDC Peak 2008 7 5.98

Mf Peak 2008 8 4.94 5.62 0.68 N

Ml Peak 2008 7 4.43 5.98 21.55 Y

GFT Peak 2008 8 5.81 5.62 0.19 N

2008–2009

CDC Peak 2009 7 3.57

Mf Peak 2009 12 3.48 2.43 21.05 N

Ml Peak 2009 12 3.33 2.43 0.90 N

GFT Peak 2009 8 3.50 3.37 0.13 N

2009–2010

CDC Peak 2009 43 7.72

Mf Peak 2009 43 8.36 7.72 20.64 Y

Ml Peak 2009 44 8.66 7.55 1.11 N

GFT Peak 2009 43 7.11 7.72 20.61 Y

2010–2011

CDC Peak 2011 4 4.55

CDC Peak 2011 6 4.55

Mf Peak 2011 6 5.84 4.55 21.29 Y

Ml Peak 2011 6 5.73 4.55 1.18 Y

GFT Peak 2011 6 4.08 4.55 20.47 Y

2011–2012

CDC Peak 2012 10 2.39

Mf Peak 2012 7 2.68 2.24 20.44 N

Ml Peak 2012 7 2.85 2.24 21.55 N

GFT Peak 2011 52 2.86 1.74 1.12 N

2012–2013

CDC Peak 2012 51 6.07

Mf Peak 2012 51 5.31 6.07 0.76 Y

Ml Peak 2012 52 5.40 4.65 21.55 N

GFT Peak 2013 2 10.56 4.52 6.04 N

ILI: Influenza-like illness, CDC: Centers for Disease Control and Prevention.
Mf: Full model, Ml: Lasso model, GFT: Google Flu Trends.
*Referent values are CDC ILI values for the corresponding week of the estimated ILI peak for Mf, Ml, and GFT.
doi:10.1371/journal.pcbi.1003581.t002

Figure 1. Time series plot of CDC ILI data versus estimated ILI data. (A) Wikipedia Full Model (Mf) accurately estimated 3 out of 6 ILI activity
peaks and had a mean absolute difference of 0.27% compared to CDC ILI data. (B) Wikipedia Lasso Model (Ml) accurately estimated 2 out of 6 ILI
activity peaks and had a mean absolute difference of 0.29% compared to CDC ILI data,. (C) Google Flue Trends (GFT) model accurately estimated 2 of
6 ILI activity peaks and had a mean absolute difference of 0.42% compared to CDC ILI data.
doi:10.1371/journal.pcbi.1003581.g001

Wikipedia Estimates ILI Activity

PLOS Computational Biology | www.ploscompbiol.org 6 April 2014 | Volume 10 | Issue 4 | e1003581



potential for this method to be altered for the monitoring of other

health-related issues such as heart disease, diabetes, sexually

transmitted infections, and others. While the above mentioned

conditions do not have the same time-varying component as

influenza, overall burden of disease may potentially be estimated

based on the number of people visiting Wikipedia articles of

interest. This is an open method that can be further developed by

researchers to investigate the relationship between Wikipedia

article views and many factors of interest to public health.

Data regarding Wikipedia page views is updated and available

each hour, though data in this study has been aggregated to the

day level, and then further aggregated to the week level. This was

done so that one week of Wikipedia data matched one week of

CDC’s ILI estimate. In practice, if this Wikipedia based ILI

surveillance system were to be implemented on a more permanent

basis, it is possible that updates to the Wikipedia-estimated

proportion of ILI activity in the United States could be available

on a daily or even hourly basis, although this application has not

yet been explored. It is hypothesized that hourly updates may have

trouble dealing with periods of low viewing activity, such as

nighttime and normal sleeping hours, and that the benefit of an

hourly update versus a daily update might not be worth the effort

involved in its perpetuation. Daily estimates are likely to be of

greater use than hourly and hold potential for use as a tool for

detecting outbreaks in real-time, by creating an alert when the

daily number of Wikipedia article views spikes over a set threshold.

As with any study using non-traditional sources of information

to make estimations or predictions, there is always some measure

of noise in the gathered information. For instance, the number of

Wikipedia article views used in this study represent all instances of

article views for the English language Wikipedia website. As such,

while the largest proportion of these article views comes from the

United States (41%, with the next largest location being the

United Kingdom representing 11%), the remaining 59% of views

come from other countries where English is used, including

Australia, the United Kingdom, Canada, India, etc. Since

Wikipedia does not make the location of each article visitor

readily available, this makes the relationship between article views

and ILI activity in the United States less reliable than if the article

view data was from the United States alone. To investigate this

bias, it may be of interest to replicate this study using data that is

country and language specific. For instance, obtaining Wikipedia

article view information for articles that exist only on the Italian

language Wikipedia website and comparing that data to specific

Italian ILI activity data. Alternatively, the timing and intensities of

influenza seasons in English-Wikipedia-using countries apart from

the United States could be investigated as potential explanations of

model performance. Depending on the timing of influenza activity

in other countries, their residents’ Wikipedia usage could

potentially bolster the presented Wikipedia-based model estima-

tions (if their influenza seasons are similar to that of the United

States), or it could negatively impact estimations (if their influenza

seasons are not similar to those of the United States). This is an

interesting method of comparison and may potentially be explored

in future iterations of this method.

If these models continue to estimate real-time ILI activity

accurately, there is potential for this method to be used to predict

timing and intensity in upcoming weeks. While re-purposing these

models could potentially be a significant undertaking, we are

interested in pursing this avenue of investigation in future works.

There has been much discussion in popular media recently

about the potential future directions of Wikipedia. It has been

noted in several papers and reviews that the number of active

Wikipedia editors has been slowly decreasing over the past 6 years,

from its peak of more than 51,000 is 2007 to approximately 31,000

in the summer of 2013. [19,28] It has been speculated that the

efforts made by the Wikimedia Foundation and it’s core group of

dedicated volunteers to create a more reliable, trustworthy corpus

of information has limited the ability of new editors to edit or

create new articles, thereby decreasing the likelihood that a new

contributor will become a trusted source of information. Com-

pounding this decrease in active editors, it has become increasingly

evident that the vast majority of articles on the English Wikipedia

website are both male and Western and European-centric, with

comparatively few articles dealing with highly female-oriented

topics or other geographic areas. Despite these concerns, the

articles relating to influenza that have been investigated in this

study are within the scope of the type of Wikipedia articles that are

routinely and adequately maintained by long-time editors. The

authors hypothesize that any decreases in the number of editors in

the Wikimedia domain are unlikely to create significant changes in

viewership of the articles of interest for estimating or predicting

influenza-like illness, and therefore should not contribute mean-

ingfully to the pursuit of this type of surveillance.

Due to an error in Wikipedia data collection, there were no

article view data available between July 13, 2008–July 31, 2008,

inclusive, resulting in a time gap of just over 2.5 weeks.

Fortunately, this time gap occurred in a traditionally low ILI

prevalence time of year, and is not suspected to meaningfully

impact analyses.

The application of Wikipedia article view data has been

demonstrated to be effective at estimating the level of ILI activity

in the US, when compared to CDC data. Wikipedia article view

data is available daily (and hourly, if necessary), and can provide a

reliable estimate of ILI activity up to 2 weeks in advance of

traditional ILI reporting. This study exemplifies how non-

traditional data sources may be tapped to provide valuable public

health related insights and, with further improvement and

validation, could potentially be implemented as an automatic

sentinel surveillance system for any number of disease or

conditions of interest as a supplement to more traditional

surveillance systems.
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