
Categorial Compositionality: A Category Theory
Explanation for the Systematicity of Human Cognition
Steven Phillips1*, William H. Wilson2

1 Mathematical Neuroinformatics Group, Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki,

Japan, 2 School of Computer Science and Engineering, The University of New South Wales, Sydney, New South Wales, Australia

Abstract

Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human
cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and
functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude
specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By
analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be
consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an
alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called
functors. A functor generalizes the notion of a map between representational states to include a map between state
transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of
cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory
offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where
representational states are no longer the center of the cognitive universe—replaced by the relationships between the maps
that transform them.

Citation: Phillips S, Wilson WH (2010) Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition. PLoS Comput
Biol 6(7): e1000858. doi:10.1371/journal.pcbi.1000858

Editor: Karl J. Friston, University College London, United Kingdom

Received March 15, 2010; Accepted June 13, 2010; Published July 22, 2010

Copyright: � 2010 Phillips, Wilson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received no specific funding for this article.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: steve@ni.aist.go.jp

Introduction

For more than two decades, since Fodor and Pylyshyn’s seminal

paper on the foundations of a theory of cognitive architecture (i.e.,

roughly, the component processes and their modes of composition

that together comprise cognitive behaviour) [1], the problem of

explaining systematicity has remained unresolved [2] despite

numerous Classicist and Connectionist attempts [3–7]. In general

terms, the problem of systematicity for a theory of cognition is to

explain why various cognitive abilities are intrinsically connected

in the sense that the capacity to exhibit some abilities is indivisibly

linked to the capacity to exhibit some other related abilities. Why,

for example, is it the case that if one has the ability to infer that

John is the lover from John loves Mary, then one also has the ability

to infer that Mary is the lover from Mary loves John, where both

abilities involve a common relation, loves? That is to ask, in general:

what is it about our cognitive system that necessitates a particular

group-oriented distribution of cognitive capacities, whereby you

don’t find people with the capacity for some but not all the

behaviours pertaining to the same group (excluding, of course,

individuals who lack a particular capacity for reasons clearly

unrelated to normal development, because of brain damage for

example)? Although the debate over what systematicity implies for

a theory of cognition has many aspects (see [2]), the generally

accepted common ground is that: systematicity is a property of

some (though not all) components of human cognition; a complete

theory of human cognitive architecture must include an

explanation for this property; and no theory of cognition has a

satisfactory explanation for it. In the remainder of this section, we

outline the systematicity property and the main problem it still

poses for existing theories, what is required for a theory to explain

it, and how our approach meets those requirements.

The systematicity problem consists of three component

problems:

1. Systematicity of representation—why is it the case that the capacity

to generate some representations (e.g., the representation

John loves Mary) is intrinsically linked to the capacity to

generate some other representations (e.g., the representation

Mary loves John)?

2. Systematicity of inference—why is it the case that the capacity to

make some inferences (e.g., that John is the lover in the

proposition John loves Mary) is intrinsically linked to the

capacity to make some other inferences (e.g., that Mary is the

lover in the proposition Mary loves John)?

3. Compositionality of representation—why is it the case that the

capacity for some semantic content (e.g., the thought that

John loves Mary, however that thought may be represent-

ed) is intrinsically linked to the capacity for some other

semantic content (e.g., the thought that Mary loves John,

however that thought may also be represented)?

These problems are logically independent—one does not

necessarily follow from another [8], and so a theory is required

PLoS Computational Biology | www.ploscompbiol.org 1 July 2010 | Volume 6 | Issue 7 | e1000858

to explain all three, though for some theories an explanation for

one property may entail explanations for others.

Classicists and Connectionists employ some form of combina-

torial representations to explain systematicity. For Classicists,

representations are combined in such a way that the tokening of

complex representations entails the tokening of representations of

their constituent entities, so that the syntactic relationships

between the constituent representations mirror the semantics

ones—systematicity is a result of a combinatorial syntax and

semantics [1]. For Connectionists, representations of complex

entities are constructed more generally so that their tokening does

not necessarily imply tokening constituent entity representations

[5,6]. An example of a Classicist’s representation of John loves

Mary would be loves (John, Mary), and a Connectionist

representation would be a tensor product so that the vectors

representing John, loves, and Mary do not literally appear

anywhere in the tensor representation. We refer to the former as

classical compositionality, and the latter as connectionist (or, functional)

compositionality.

In general, a Classical or Connectionist architecture can

demonstrate systematicity by having the ‘‘right’’ collection of

grammatical rules, or functions such that one capacity is indivisibly

linked to another. Suppose, for example, a Classical system with

the following three rules:

G1:

P ? Agent loves Patient

Agent ? John D Mary
Patient ? John D Mary:

G1 provides the capacities to generate all four representations

(i.e., John loves John, John loves Mary, etc.), and these

capacities are indivisibly linked, because absence of any one of

those rules means the system cannot generate any of those

representations. In no case can the system generate one without

being able to generate the others. So, this Classical architecture

has the systematicity of representation property with respect to this

group of four propositions. A tensor product [9], or Gödel

numbering [5] scheme is a functionally compositional analogue of

this explanation. Systematicity of inference follows from having

additional processes that are sensitive to the structure of these

representations. For Classical architectures, at least, composition-

ality of representation also follows, because the semantic content of

a complex representation is built up from the semantic contents of

the constituents and their syntactic relationships [8]. Aizawa [2,8]

disputes whether a Connectionist architecture can also demon-

strate compositionality of representation. Regardless, though,

neither Classicism, nor Connectionism can derive theories that

provide a full account of systematicity [2].

A demonstration of systematicity is not an explanation for it. In

particular, although grammar G1 has the systematicity of

representation property, the following grammar:

G2:

P ? John loves Patient D Agent loves Mary
Agent ? John D Mary
Patient ? John D Mary

does not. This architecture cannot generate a representation of the

proposition Mary loves John even though it can generate

representations of both John and Mary as agents and patients,

and the John loves Mary proposition. The essential problem

for Classical theory—likewise Connectionist theory—is that

syntactic compositionality by itself is not sufficient without some

additional assumptions for admitting grammars such as G1 that

have the systematicity property, while excluding grammars such as

G2 that do not. An explanation for systematicity in these cases

turns on the nature of those additional, possibly ad hoc assumptions.

An explanatory standard for systematicity
To further clarify what is required of a theory to explain

systematicity [1,3], Aizawa [2] presents an explanatory standard

for systematicity and the problem of ad hoc assumptions, which we

follow, by analogy with the Ptolemean (geocentric) versus

Copernican (heliocentric) explanations for the motions of the

planets (see [10] for a review). The geocentric explanation for

planetary motion places the Earth at the center of the other

planets’ circular orbits. Although this theory can roughly predict

planetary position, it fails to predict periods of apparent retrograde

motion for the superior planets (i.e. Mars, Jupiter, etc.) across the

night sky without the assumption of epicycles (i.e., circular orbits

with centers that orbit the Earth). This additional assumption is ad

hoc in that it is unconnected with the rest of the theory and

motivated only by the need to fit the data—the assumption could

not be confirmed independently of confirming the theory. The

heliocentric explanation, having all planets move around the Sun,

eschews this ad hoc assumption. Retrograde motion falls out as a

natural consequence of the positions of the Earth and other planets

relative to the Sun. Tellingly, as more accurate data became

available, the geocentric theory had to be further augmented with

epicycles on epicycles to account for planetary motion; not so for

the heliocentric theory.

The theory of planetary motion, of course, does not end there.

The heliocentric theory, with its circular orbits, cannot explain the

elliptical motion of the planets without further assumptions, and so

was superseded by Newtonian mechanics. Newtonian mechanics

cannot explain the precession of planetary orbits, and was in turn

superseded by Einstein’s theory of relativity. In each case, the

superseding theory incorporates all that was explained by the

preceding theory. Evaluating competing theories in this manner

Author Summary

Our minds are not the sum of some arbitrary collection of
mental abilities. Instead, our mental abilities come in
groups of related behaviours. This property of human
cognition has substantial biological advantage in that the
benefits afforded by a cognitive behaviour transfer to a
related situation without any of the cost that came with
acquiring that behaviour in the first place. The problem of
systematicity is to explain why our mental abilities are
organized this way. Cognitive scientists, however, have
been unable to agree on a satisfactory explanation.
Existing theories cannot explain systematicity without
some overly strong assumptions. We provide a new
explanation based on a mathematical theory of structure
called Category Theory. The key difference between our
explanation and previous ones is that systematicity
emerges as a natural consequence of structural relation-
ships between cognitive processes, rather than relying on
the specific details of the cognitive representations on
which those processes operate, and without relying on
overly strong assumptions.

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 2 July 2010 | Volume 6 | Issue 7 | e1000858

has an extensive history in science, and so one may expect it to be

a reasonable standard for an explanation of systematicity in

cognitive science.

Aizawa [2] notes that although philosophers of science may not

have a precise definition for the concept of an ad hoc assumption,

one can nonetheless usefully characterize the idea by analogy with

generally accepted examples, such as the assumption of epicycles,

which we just mentioned. Another example Aizawa uses is the

Creationist versus Darwinian theory of speciation, where the

appeal to a supernatural being to explain the existence of different

species is an ad hoc assumption. The general sense in which a

theory fails to provide a satisfactory explanation by its appeal to ad

hoc assumptions is when those additional, so called auxiliary,

assumptions are unconnected to the core assumptions and

principles of the theory, motivated only by the need to fit the

data, and cannot be confirmed independently of confirming the

theory. In this sense, the core theory has no explanatory power for

the particular phenomenon of interest. Note that an auxiliary

assumption is not necessarily ad hoc, nor is it precluded from

subsequent inclusion into the set of core assumptions of the

modified theory. Orthogonal experiments may provide confirma-

tory data for an auxiliary assumption, independent of the theory in

question. Observations of the Jovian moons would have been the

sort of independent confirmatory evidence for epicycles, had such

data been available at the time, to justifiably include it as one of

the core assumptions. However, the assumption that all heavenly

bodies are governed this way ultimately proved untenable. The

kind of theory sought here is one where systematicity necessarily

follows without requiring such ad hoc assumptions. This charac-

terization guides our analysis of the problem posed by the

systematicity property, and our explanation for it.

The problem for Classical and Connectionist theories is that

they cannot explain systematicity without recourse to their own ad

hoc assumptions [2]. For Classicism, having a combinatorial syntax

and semantics does not differentiate between grammars such as

G1 and G2. For Connectionism, a common recourse to learning

also does not work, whereby systematicity is acquired by adjusting

network parameters (e.g., connection weights) to realize some

behaviours—training set—while generalizing to others—test set.

Learning also requires ad hoc assumptions, because even widely

used learning models, such as feedforward [11] and simple

recurrent networks [12], fail to achieve systematicity [13–17] when

construed as a degree of generalization [18,19]. Hence, neither

Classical nor Connectionist proposals satisfy the explanatory

standard laid out by Fodor and Pylyshyn [1] and Fodor and

McLaughlin [3] (see also [20], Appendix), and further articulated

by Aizawa [2]. Ironically, failure to meet this criterion was one of

the reasons Classicists rejected Connectionist explanations for

systematicity. The import of Aizawa’s analysis is that the same

shortcoming also befalls Classicism, and so an explanation for

systematicity is still needed. In this regard, it would appear that the

90s were also the ‘‘lost decade’’ for cognitive science.

In hindsight, the root of the difficulty that surrounds the

systematicity problem has been that cognitive scientists never had

a theory of structure to start with (i.e. one that was divorced, or at

least separated from specific implementations of structure-sensitive

processes). In fact, such a theory has been available for quite some

time, but its relevance to one of the foundational problems of

cognitive science has not previously been realized. Our category-

theory based approach addresses the problem of ad hoc

assumptions because the concept of an adjunction, which is central

to our argument, ensures that the construct we seek not only exists,

but is unique. That is to say, from this core assumption and

category theory principles, the systematicity property necessarily

follows for the particular cognitive domains of interest, because in

each case the one and only collection of cognitive capacities

derived from our theory is the systematic collection, without

further restriction by additional (ad hoc) assumptions.

Methods

Category theory is a theory of structure par excellence [21–23]. It

was developed out of a need to formalize commonalities between

various mathematical structures [24], and has been used

extensively in computer science for the analysis of computation

[25–28]. Yet, despite computationalism being the catchcry of

many psychologists since the cognitive revolution, applications of

category theory to cognitive psychology have been almost non-

existent (but, see [29,30] for two examples). Our explanation of

systematicity is based on the concept of an adjunction, which

depends on the concepts of category, morphism, product, functor, and

natural transformation. So, in this section, we provide formal

definitions of these concepts. (For further explanation of some

category theory concepts in the context of cognition, see [30].)

An adjunction is a formal means for capturing the intuition that

a relationship between mathematical objects is ‘‘natural’’—

additional constructs are unnecessary to establish that relationship

(see also [23], p2). The mathematical notion of being natural dates

back at least to [24], and the technical aspect is given starting

where we define natural transformation. In the current context of

meeting the explanatory standard for systematicity, identifying a

suitable adjunction means that no further (ad hoc, or arbitrary)

assumptions are needed to define the relationship between a

particular cognitive architecture and a desired group of cognitive

capacities. Such constructs look natural (once understood), but it is

the mathematical criterion that definitely establishes naturality.

Category
A category C consists of a class of objects DCD~(A,B, . . .); a set

C(A,B) of morphisms (also called arrows, or maps) from A to B
where each morphism f : A?B has A as its domain and B as its

codomain, including the identity morphism 1A : A?A for each object

A; and a composition operation, denoted ‘‘0’’, of morphisms

f : A?B and g : B?C, written g0f : A?C that satisfy the laws of:

N identity, where f 01A~f ~1B0f , for all f : A?B; and

N associativity, where h0(g0f)~(h0g)0f , for all f : A?B,

g : B?C and h : C?D.

The most familiar example of a category is Set, which has sets

for objects and functions for morphisms, where the identity

morphism 1A is the identity function and the composition

operation is the usual function composition operator ‘‘0’’. Another

example, where continuity is important, is the category of metric

spaces and continuous functions.

Morphisms
Certain morphisms have important properties that warrant

giving them names. Two such morphisms, which we will refer to

later, are called isomorphisms and homomorphisms. A morphism

f : A?B is an isomorphism if there exists a morphism g : B?A,

such that g0f ~1A and f 0g~1B. If g exists, then it is the inverse of

f , also denoted as f {1.

Homomorphisms pertain to categories whose objects have

additional internal structure, such as groups. For example, the

category Grp has groups for objects, and the morphisms are group

homomorphisms. A group consists of a set G of elements, and an

associative binary operation �, satisfying identity and inverse

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 3 July 2010 | Volume 6 | Issue 7 | e1000858

axioms. That is, G has an identity element e, and for each g[G,

an inverse element g{1 [G, such that e � g~g~g � e and

g{1 � g~e~g � g{1. A group homomorphism is a morphism

f : (G, �)?(H,#), such that f (g1 � g2)~f (g1)#F(g2), for all

g1,g2 [G. Homomorphisms in other categories (e.g., graph

homomorphisms) are defined analogously.

Product
A product of two objects A and B in a category C is an object P

together with two morphisms p1 : P?A and p2 : P?B, such that

for any pair of morphisms z1 : Z?A and z2 : Z?B, there is a

unique morphism u : Z?P, such that the following diagram

commutes:

where a broken arrow indicates that there exists exactly one

morphism making the diagram commute. To say that a diagram

commutes is to mean that the compositions along any two paths

with the same start object and the same finish object are the same.

So, in this diagram, z1~p10u and z2~p20u, where p1 and p2 are

sometimes called projection morphisms. A product object P is

unique up to a unique isomorphism. That is, for any other product

object P’ with morphisms p’1 : P’?A and p’2 : P’?B there is one

and only one isomorphism between P and P’ that makes a

diagram like this one commute. Hence, P is not unique, only

unique with respect to another product object via isomorphism.

This characteristic has an important consequence for our

explanation of systematicity, which we present in the Results

section. An essential characteristic of a product object is that the

constituents A and B are retrievable via the projection morphisms.

P is also written A|B, and since u is uniquely determined by z1

and z2, u is often written as Sz1,z2T, and the diagram used in

defining a product then becomes

In Set, P is (up to isomorphism) the Cartesian product (A|B,

p1 : (a,b).a, p2 : (a,b).b), where a[A, b[B, and u is the

product function Sz1,z2T : Z?A|B, sending x to (z1(x),z2(x)),
so that p10u~z1 and p20u~z2. The ‘‘maps to’’ arrow, .,

indicates the action of a function on a domain element, so f (a)~b
is equivalent to f : a.b. (A|B refers both to a general product

in any category with products and the more specific Cartesian

product in the category Set.)

The categorical concept of product is a very general notion of

combinatoriality. Not surprisingly, then, Classical and Connec-

tionist notions of combinatoriality can be seen as special cases of

categorical products. A grammar like G1 (Introduction), for

instance, can be used to realize the Cartesian product of the set

of agents and the set of patients (i.e. by employing the first

production without the loves symbol). A categorical product

can also be realized by including suitable rules for inferring the

agent and patient from this Cartesian product. (A grammar like

G2 cannot realize a Cartesian product, or categorical product;

in fact, it realizes a union of two partial products.) Similarly, a

Connectionist method such as the outer product of two vector

spaces with suitable projections from the outer product space to

the original vector spaces also realizes a categorical product.

However, an explanation for systematicity requires more than

just realization, and as we shall see, additional category theory

concepts are needed.

Functor
A functor F : C?D is a structure-preserving map between

categories C and D that associates each object A in C to an object

F (A) in D; and each morphism f : A?B in C to a morphism

F (f) : F (A)?F (B) in D, such that F (1A)~1F (A) for each object

A in C; and F(g0Cf)~F (g)0DF (f) for all morphisms f : A?B
and g : B?C for which compositions 0C and 0D are defined in

categories C and D, respectively. The following diagram shows the

details of a functor:

where dashed rectangles encapsulate the categories, and arrows

between morphisms are omitted. The object and morphism

components of a functor are sometimes explicitly distinguished as

F0 and F1, respectively. Otherwise, the functor component is

implicitly identified by its argument.

Functor composition and isomorphism are defined analogously

to morphisms (above). That is, the composition of functors

F : C?D and G : D?E is the functor G0F : C?E, sending all

objects A in C to objects G0F(A) in E; and morphisms f : A?B
in C to morphisms G0F (f) : G0F (A)?G0F (B), such that identity

and composition are respected. That is, G0F(1A)~1G0F (A); and

G0F(g0Cf)~(G0F (g))0E(G0F (f)). A functor F : C?D is an

isomorphic functor, if and only if there exists a functor G : D?C
such that G0F~1C and F0G~1D, where 1C and 1D are the

identity functors sending objects and morphisms to themselves in

the respective categories.

Theories of cognition employ some form of representation.

Functors provide a theoretical basis for constructing representa-

tions. For example, computational systems often employ lists of

items, such as numbers. In category theory, lists can be modeled as

monoids from the category Mon whose objects are monoids, and

morphisms are monoid homomorphisms [28]. A monoid (M,:,) is

a set M, with an associative binary operation :, and an identity

element , such that m: ~m~ :m for all m[M. A list monoid

(S�,:,) [28] is the set S� of all ordered lists constructed from set S
by concatenation operator :, where the identity element is the

empty list (so that, e.g., ½1,2�: ~½1,2�). (It is worth noting that

strings, e.g., lists of characters, of length 2 over the set S are

ð1Þ

ð3Þ

ð2Þ

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 4 July 2010 | Volume 6 | Issue 7 | e1000858

denoted S2, and strings of length n denoted Sn. In computer

science, � often means ‘‘match anything’’, hence the notation S�

can be read as strings of any length n§0.) Lists can be constructed

from sets by the functor List : Set?Mon, as indicated in the

example diagram

where lists is the object part of List (i.e., List0~lists) and maplist is

the morphism part (i.e., List1~maplist), so that, e.g.,

maplist : sqr . sqrlist (i.e., morphism sqr is mapped to monoid

homomorphism maplist(sqr), which we will refer to as sqrlist). (For

simplicity, we have omitted composition with a second morphism in

each of the categories and functor mappings, as was shown in

Diagram 3.) So, for example, sqrlist(½1,2�:½3�)~sqrlist(½1,2,3�)~
½1,4,9�~½1,4�:½9�~sqrlist(½1,2�):sqrlist(½3�). The examples pertain-

ing to lists were adapted from [28] (Chapter 2), where L(S) in [28]

corresponds to our S�. We choose to label the object component of

the functor lists rather than list to emphasize the fact that the

functor constructs a set of lists of numbers from a set of numbers, not

just a single list containing those numbers.

The two different sorts of arrows in Diagrams 3 and 4 highlight

the constructive nature of functors. The objects are (co)domains

with respect to the morphisms within categories, but are

themselves elements of larger objects (in general, the class DCD)
with respect to the morphisms between categories. In programmer

parlance, sqr was ‘‘lifted’’ from being a function over numbers to

become a function sqrlist over lists of numbers. In this way,

functors provide a means for constructing new representations and

processes from existing ones in a structurally consistent manner.

Notice that the definition of functor does not dictate a particular

choice for monoid homomorphism as part of the definition of List.

A natural choice is to define maplist(f) so that functions applied to

one-item lists result in one-item lists (i.e., maplist(f) : ½x�. ½f (x)�).
Another choice that turns out to also respect the definition of a

functor includes two copies of each transformed element (i.e.,

maplist’(f) : ½x1, . . . ,xn�. ½f (x1),f (x1), . . . ,f (xn),f (xn)�). In this

case,

maplist0(f)(½x1, . . . ,xn�:½y1, . . . ,ym�)

~maplist0(f)(½x1, . . . ,xn,y1, . . . ,ym�)

~½f (x1),f (x1), . . . ,f (xn),f (xn),f (y1),f (y1), . . . ,f (ym),f (ym)�

~½f (x1),f (x1), . . . ,f (xn),f (xn)�:½f (y1),f (y1), . . . ,f (ym),f (ym)�

~maplist0(f)(½x1, . . . ,xn�):maplist0(f)(½y1, . . . ,ym�):

So, maplist’(f) and in particular sqrlist’: ½x1, . . . ,xn�. ½x2
1,x2

1, . . . ,
x2

n,x2
n� are monoid homomorphisms. In fact, there are many

possible monoid homomorphisms that could be chosen to define this

functor. Consequently, in the case of an architectural component of a

cognitive system, there are many possible ways of constructing

structurally consistent representations and processes from existing

ones. We need to find a principled way to choose the ‘‘right’’ monoid

homomorphism. In the context of explaining systematicity, a similarly

principled choice is necessary. To narrow the choice down to a

particular monoid homomorphisms, and hence a particular represen-

tational scheme, we need two additional category theory concepts:

natural transformation and adjunction.

Natural transformation
A natural transformation g : F?G is a structure-preserving

morphism from domain functor F : C?D to codomain functor

G : C?D that consists of D{maps gA : F (A)?G(A) for each

object A in C, such that G(f)0gA~gB0F (f), as indicated by the

commutative diagram in the category D

Again for expository purposes, we include the source category

and functor arrows, which are usually left implicit in such

diagrams. When a transformation is natural in the technical sense

it seems natural in the intuitive sense, for mathematicians. In fact,

category theory was founded in an attempt to formalize such

intuitions [24]. We will return to this point about naturality, in the

Discussion, as it pertains to an explanation of systematicity without

reliance on ad hoc assumptions.

A natural transformation is a natural isomorphism, or natural

equivalence if and only if each gA is an isomorphism. That is, for

each gA : F (A)?G(A) there exists a g{1
A : G(A)?F (A) such that

g{1
A 0gA~1F (A) and gA0g{1

A ~1G(A). Natural transformations also

compose, and the composition of two natural transformations is

also a natural transformation. Just as there are identity morphisms

mapping objects to themselves, and identity functors mapping

categories to themselves, there are also identity natural transfor-

mations, iF : F?F , mapping functors to themselves. And, so, the

composition of a natural isomorphism (isomorphic natural

transformation), g : F?G, with its inverse, g{1 : G?F , is an

identity natural transformation, i.e., iF ~g0g{1.

Functors preserve structure between categories; natural trans-

formations identify the similarities between functors. For our

purposes, functors construct new representations and processes

from existing ones; natural transformations identify the similarities

between constructions. A simple example that is closely related to

the List functor example, illustrating this perspective, involves list

reversal as indicated by the commutative diagram

where the domain and codomain objects of each morphism are

sets of lists, such as f1,2,3g�; and sqrl is essentially sqrlist with

ð4Þ

ð5Þ

ð6Þ

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 5 July 2010 | Volume 6 | Issue 7 | e1000858

(co)domain the set S� instead of the monoid (S�,:,). As the

diagram illustrates, squaring a reversed list is the same as reversing

a squared list. So, there is a non-trivial (i.e. non-identity)

relationship between the list monoid construction functor (List)
and itself. The functor Lst : Set?Set constructing the lists in

Diagram 6 is closely related to List : Set?Mon in that the

returned object S� is just the underlying set of the monoid (S�,:,),
forgetting the binary operation : and the identity element. The

underlying set can also be extracted by a functor from the category

Mon, as we will see in the next section. This example shows how

two ways of constructing individual lists, via the Lst functor, are

related by the list reversal natural transformation, rev.

Although their associated diagrams look similar, there is an

important difference between functor and natural transformation

pertaining to the equality constraint that defines the relationships

between object elements. For a functor, the equality constraint is

local to the codomain of the transformation, i.e. the relationships

between object elements within the constructed category. And so,

the elements of the objects in the new category are only indirectly

related to the elements in the corresponding objects of the source

category by the categories’ common external structure (i.e. inter-

object relationships). For a natural transformation, the equality

constraint spans the transformation, involving object elements

mapped by both domain and codomain functors. And so, the two

functors are directly related to each other by the internal structure

of their associated objects (i.e. the relationships between object

elements within an object). As part of a theory of cognitive

architecture, there is a tension between the freedom afforded by

functorial construction on the one hand—allowing an architecture

to transcend the specific details of the source elements to realize a

variety of possible representational schemes for those elements—

and the need to pin down such possibilities to specific referents on

the other. This tension is resolved with adjunctions.

Adjunction
An adjunction consists of a pair of functors F : C?D, G : D?C

and a natural transformation g: 1C?(G0F), such that for every

C{object X and C{map f : X?G(Y) there exists a unique

D{map g : F (X)?Y , such that f ~G(g)0gX , indicated by the

following commutative diagram:

where the functors are implicitly identified by (co)domain

categories C (left subdiagram) and D (right subdiagram). The

two functors are called an adjoint pair, (F ,G), where F is the left

adjoint of G, and G is the right adjoint of F ; and natural

transformation g is called the unit of the adjunction.

The left and right functors of an adjoint pair are like ‘‘inverses’’ of

each other, but unlike an isomorphic functor whose composition

with its inverse sends all objects and morphisms to themselves, the

returned objects and their elements of a composition of left and right

adjoints are related to the argument (source) objects and their

elements by a natural transformation. For categories Set and Mon,

the adjoint pair (F ,U), consisting of functor F : Set?Mon that

constructs the free monoid F (S) on the set S, and then ‘‘forgetful’’

functor U : Mon?Set returns the underlying set S� of monoid

F (S), are related by an injection. The injection is called an insertion of

generators, whose component at S, iS : S?S�, sends each element of

S to the corresponding element (one-item list) in S�. The elements

iS(s) together generate the set S� (i.e. S is the alphabet from which

the set S� of all ‘‘words’’ is constructed where each s[S is mapped

to ½s�[S�). In this context, iS : S?S� is the unit of this adjoint pair.

The effect of F on objects has just been given; the effect on

morphisms is as follows: if a : S?T is a function, then

a� : S�?T� is defined as follows:

a�(S)~ T

a�(s1, . . . ,sn)~a(s1), . . . ,a(sn), Vs1, . . . ,sn [S

(cf. [25], p.111–112). Note that F is the functor List defined in the

Functors section.

Monoid F (S) is ‘‘free’’ in the informal sense that there are no

missing or extra bits in the construction used to satisfy

commutativity. The precise definition of free is as follows. Given

the forgetful functor U , and an object S of Set, F (S) is free on S if

there is a morphism iS : S?U0F (S) such that for any morphism

f : S?U(M), there exists a unique morphism g : F (S)?M such

that f ~U(g)0iS , indicated in the following commutative diagram:

However, not just any monoid generated from a set is a free

monoid. For instance, the monoid (f0,1g,z,0) (i.e. addition

modulo 2) in the diagram

is not the free monoid on any set S, because the only

homomorphism, g : (f0,1g,z,0)?(N,z,0), maps 0 and 1 to

0[N, which does not make the diagram commute for f : x.1.

That is, U(g)0iS(x)~0=1~f (x). (It is easy to show that the free

monoid on the empty set is f0g. So f0,1g is not the free monoid

on the empty set, either.) Other free objects, such as the free group

on a set are defined analogously (see [21]). A simple example of a

free monoid as may be employed by a cognitive system is a

primitive form of counting, where (f1g�,:,) is the free monoid

counter, having elements f ,½1�,½1,1�,½1,1,1�, . . .g, on singleton set

f1g. This monoid is isomorphic to addition over the natural

numbers, i.e. the monoid (N,z,0).

From free objects we get an alternative (equivalent) definition of

adjunction: consider functor G : D?C from the original defini-

tion. If for every object X [DCD, F (X) is free on X with morphism

gX , then functor F : C?D, with morphism mappings defined so

that G(F (f))0gX ~gY 0f , is the left adjoint of G, and G is the right

adjoint of F [31].

ð7Þ

ð8Þ

ð9Þ

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 6 July 2010 | Volume 6 | Issue 7 | e1000858

Yet another (equivalent) definition of adjunction, favoured by

category theorists for its conceptual elegance, highlights the

symmetry between a pair of adjoint functors: a bijection (one-to-

one correspondence) between the set of morphisms from object

F (X) to Y in category D and the set of morphisms from object X

to G(Y) in category C. So, identifying the unique morphism in

one category means that it is associated with one and only one

morphism in the other category.

In the list construction example, the unit of the adjunction is the

injection i : x. ½x� sending each element x in the set S to the one-

item list ½x� in the set of all lists S� constructed from S, as shown in

the following diagram:

where the left adjoint, F : Set?Mon, constructs the free monoid

(S�,:,) on the set S; and the right adjoint, U : Mon?Set, returns

the underlying set, S�, of a list monoid, as mentioned earlier. In this

way, given i0f : x. ½f (x)�, the only homomorphism in the

constructed category making the diagram commute is

maplist(f) : ½x1, . . . ,xn�. ½f (x1), . . . ,f (xn)�. The definition for

arrow mapl(f) is essentially the same as maplist(f), except that its

(co)domain is a set, not a monoid. Other monoid homomorphisms

that could have been chosen as part of the List functor definition,

such as maplist’(f) : ½x1, . . . ,xn�. ½f (x1),f (x1), . . . ,f (xn),f (xn)�,
are excluded by i0f : x. ½f (x)� and the commutativity property of

the adjunction, because mapl’(f)0i(x)~mapl’(½x�)~½f (x),f (x)�=
½f (x)�~i0f (x).

Since this arrangement works for any morphism in Set, it can

also be used to define a particular list length function from a family

of analogous ‘‘length’’ functions as indicated in the following

commutative diagram:

where monoid (N,z,0) is the set of non-negative integers with

addition as the operator and 0 as the identity element; 1 : S?N is

a constant function sending every element to the number 1; and

len/length are functions returning the number of items in a list.

As in the previous example, the definition of functor affords other

choices for ‘‘length’’, such as length’ : L.2|length(L), where L
is a list. This arrow is also a monoid homomorphism, since

length’(L1
:L2)~2|(n1zn2)~(2|n1)z (2|n2)~length’(L1)z

length’(L2), where n1 and n2 are the lengths of lists L1 and L2,

respectively. Again, however, the morphism 1 : S?N and the

commutativity property force the usual choice for length function

(i.e. len), and excludes others such as len’, because len’0i(x)~
len’(½x�)~2=1~1(x).

A general pattern emerges from this use of adjunction. Functor

construction may afford multiple choices for particular morphisms

(processes) in the constructed category, but a principled choice is

obtained through the commutativity property of the adjunction.

This arrangement means that we are not committed a priori to a

particular representational scheme; i.e., we do not have to make

an ad hoc assumption about what that representational format

should be. Given that an architecture has the capacity for an

instance of the group of computations under consideration, then

necessarily it applies to all other computations in that group. In the

case of list length, for example, len’ may indeed be the ‘‘correct’’

choice when we require the length of a list of characters in number

of bytes for characters that are 2-byte unicodes (i.e. the characters

appearing in the extended set that includes other special symbols

and language scripts requiring two bytes for unique identification).

So, to paraphrase, a computational architecture with the capacity

to count the length (in bytes) of some lists of 2-byte unicodes

necessarily has the capacity to compute byte lengths for all other

unicode lists. In this way, the explanation for the ‘‘systematicity of

list length’’ has two parts: existence is afforded by the possible list

length functions; and uniqueness is afforded by the commutativity

property of the adjunction. Without the adjunction, the choice of

construction is by ad hoc assumption. Our explanation for the

systematicity of human cognition follows this pattern.

Results

With these formal concepts in hand, we now proceed to our

explanation of systematicity. We apply our explanation in two

domains: systematicity with respect to relational propositions, and

systematicity with respect to relational schemas. Then, we contrast

our explanation with the Classical and Connectionist ones.

Systematicity of relational propositions: (diagonal,
product) adjoint

For expository purposes, we develop our adjoint functors

explanation from its components. One may wonder whether a

simpler category theory construct would suffice to explain

systematicity. For this example domain, the components of this

adjoint have some systematicity properties, but in and of

themselves do not explain systematicity—just as for Classicism

and Connectionism, having a property is not the same as

explaining it. This bottom-up approach motivates the more

complex category theory construct from which the systematicity

properties necessarily follow. Our approach has three steps. First,

we show a categorical product that has the systematicity of

representation and systematicity of inference properties. However,

a product of two objects may afford many isomorphic product

objects that do not also have the compositionality of representation

property. Second, we show that the product functor provides the

principled means for constructing only those products that also

have the compositionality of representation property. There may,

however, be several products that have the compositionality

property, but which differ in semantic content by having different

orders between identical sets of constituents. So, a principled

choice is needed to determine the product. So, third, we show that

the diagonal functor, which is left adjoint to the product functor,

provides that principled choice by the commutativity property of

the (diagonal, product) adjoint functor pair. For concreteness, we

refer to the category Set, but our explanation does not depend on

this category.

(If we require an explanation of systematicity with respect to

ternary relational propositions, then a ternary product

(A|B|C,p1,p2,p3) is employed. The explanation for systematicity

extends analogously, where the diagonal and product functors involve

object triples. We may also need to explicitly represent a symbol for a

relation, such as Loves. In this case, an object representing the

relation symbol is paired with the product object representing the

ð10Þ

ð11Þ

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 7 July 2010 | Volume 6 | Issue 7 | e1000858

related entities. We address this situation in the next section. For

present purposes, we omit relation symbols, since the relation is

constant across the instances considered here and nothing essentially

changes by its omission.

First, suppose objects A (say, agents) and B (patients) are sets

containing representations of John and Mary, denoted as fJ, Mg.
Although A and B are the same set of members, we maintain distinct

names to keep track of the distinction between member pairs. (The

assignment of elements to objects is itself an assumption, but not an ad

hoc one for our theory, as explained in the next section and in the

Discussion.) A categorical product of these two sets is the Cartesian

product of A and B, which is the set of all pairwise combinations of

elements from A and B, together with projections p1 and p2

for retrieving the first and second constituents in each case.

That is, A|B~f(J, J),(J, M),(M, J),(M, M)g, p1 : (a,b) . a, and

p2 : (a,b) . b. By definition, the Cartesian product A|B generates

all pairwise combinations of elements from A and B, therefore this

Cartesian product has the systematicity of representation property.

Moreover, by definition, the categorical product (A|B,p1,p2) affords

the retrieval of each constituent from each representation (otherwise it

is not a product), therefore the categorical product also has the

systematicity of inference property. In this case, Z from the categorical

product definition takes the role of input, so in terms of Diagram 2

inferring John as the lover from John loves Mary is just

z1(JM)~p10u(JM), where JM is the input and u is the input-to-

product object map, whose unique existence is guaranteed by

definition.

The Cartesian product, however, is not the only product object

that satisfies the definition of a categorical product of A and B. An

alternative product has P~f1,2,3,4g as the product object, and

p’1 : 1.J,2.J,3.M,4.M and p’2 : 1.J,2.M,3.J,4.M as

the projections. Indeed, for this example, any four-item set together

with the appropriate projections for retrieving the constituents

would suffice. However, these alternatives do not have the

compositionality of representation property: the semantic contents

of these representations, whatever they may be, are not systemat-

ically related to each other, or the semantic content of John, or

Mary. Hence, categorical products, in themselves, do not

necessarily provide an explanation of systematicity.

Second, for any category C that has products (i.e. every pair of

objects in C has a product), one can define a product functor

P : C|C?C (or, P : C|C|C?C, in the ternary case), that is

from the Cartesian product of categories, C|C, itself a category,

to C, where P0 : (A,B) . A|B, P1 : (f ,g) . f |g, as indicated

by the following diagram:

recalling that our functor diagrams explicitly identify the object

component, P0, but not the morphism component, P1, of the

functor. In this case, the semantic contents of these elements are

systematically related to each other and their constituents John

and Mary. This categorical construction is an instance of Classical

compositionality, whereby the constituents ai [A, bj [B are

tokened wherever the compositions (ai,bj)[A|B are tokened.

As such, it has the compositionality of representation property.

Although the product functor has the compositionality of

representation property, it introduces a different problem:

(B|A,p’2,p’1), where p’2 : (b,a).a and p’1 : (b,a).b is also a

valid product, but the semantic content of (a,b) is not the same as

(b,a). That is because they have different order relationships

between their constituents even though the corresponding

constituents are identical. Thus, a principled choice is required

to determine whether, for example, John loves Mary should

map to (John, Mary), or (Mary, John). Otherwise, one can

define an architecture that does not have the systematicity of

inference property by employing both products to correctly infer

Johnas the lover in John loves Mary via (A|B,p1, p2), yet

incorrectly infer John as the lover in Mary loves John via

(B|A,p’2,p’1), where position within the product triple identifies

the relevant projection. The assumption that architectures employ

only the first product is ad hoc just like the assumption that Classical

architectures employ grammars such as G1, but not G2. So, a

principled choice is needed to determine the product.

Third—final step, this problem brings us to the second aspect of

our explanation foreshadowed in the Introduction (i.e. unique-

ness). Again, as we saw with lists, a particular construction is

specified through the left adjoint functor. The left adjoint to the

product functor is the diagonal functor D : C?C|C (or,

D : C?C|C|C, in the ternary case), where D0 : A. (A,A),
D1 : f . (f ,f) as indicated by the following diagram:

The (diagonal, product) adjoint pair is indicated by the

following commutative diagram:

(see [28] Example 2.4.6). In this manner, the John loves Mary

family of cognitive capacities is specified by the commutative

diagram

where ag and pt are the agent and patient maps from the set of

proposition inputs Pr into the set S~A~B containing all the

possible constituent representations. Here, we explicitly consider the

case of equality, so that A|B~B|A~S|S. When A=B,

ag|pt and pt|ag have different codomains, since A|B=B|A,

so the conflict between these products does not come into play,

therefore the adjunction is not required and the product functor is

ð12Þ

ð13Þ

ð14Þ

ð15Þ

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 8 July 2010 | Volume 6 | Issue 7 | e1000858

sufficient. With the understanding that sets A and B are equal, we

maintain the notational distinction for clarity in the subsequent text.

Given Sag,ptT as the morphism used by the architecture to map

proposition inputs to their corresponding internal representations,

then the definition of an adjunction guarantees that (ag,pt) is uni-

que with respect to making Diagram 15 commute via ag|pt. That

is, (ag|pt)0S1Pr,1PrT(JM)~(ag|pt)(JM,JM)~(John,Mary)~
Sag,ptT(JM), where JM is the input for proposition John

loves Mary. The alternative construction pt|ag is exclud-

ed because (pt|ag)0S1Pr,1PrT(JM)~(pt|ag)(JM,JM)~(Mary,
r=(John,Mary)~Sag,ptT(JM). Having excluded pt|ag by the

commutativity property of the adjunction, the only two remaining ways

to map the other inputs (i.e. Sag,ptT and (ag|pt)0S1Pr,1PrT) are

equal. So, given that the architecture can represent John loves

Mary as (John, Mary) via Sag,ptT and infer John as the lover via

p1 from the product (A|B,p1,p2), then necessarily it can represent

Mary loves John and infer Mary as the lover using the same

morphisms. That is, p10Sag,ptT(MJ)~p1(Mary, John)~Mary,

or p10(ag|pt)0S1Pr,1PrT(MJ)~p10(ag|pt)(MJ,MJ)~p1(Mary,
John)~Mary.

This explanation works regardless of whether proposition John

loves Mary is represented as (John, Mary) via Sag,ptT, or

(Mary, John) via Spt,agT. In the latter case, the adjunction picks

out just the construction (pt,ag), and hence pt|ag, because it is

the one and only one that makes the following diagram commute:

That is, (pt|ag)0S1Pr,1PrT(JM)~(pt|ag)(JM, JM)~(Mary,
John)~Spt,agT(JM), but (ag|pt)0S1Pr,1PrT(JM)~(ag|pt)(JM,
JM)~(John,Mary)=(Mary,John)~Spt,agT(JM). Given that the

architecture can represent John loves Mary as (Mary, John)
via Spt,agT and infer John as the lover via p’2 from the product

(B|A,p’2,p’1), then necessarily it can do so for Mary loves

John using the same morphisms. That is, p’20Spt,agT(MJ)
~p’2(John, Mary)~Mary, or p’20(pt|ag)0S1Pr,1PrT(MJ)~
p’20(pt|ag)(MJ,MJ)~p’2(John,Mary)~Mary.

Explicit (multiple) relational propositions
If we need to explicitly represent a symbol for a relation, such as

Loves, the product object is paired with an object, say RL,

representing the context in which the entities are related. The

object representing the relation in this case is (RL,A|B). This

situation may arise where we need an explanation for systematicity

that involves multiple similar relations, e.g., loves, likes, dislikes, and

hates, where the capacity for instances of each of these relationships

is co-extensive. That is, if one can represent John loves Mary

and John likes Mary, then one can also represent the other six

combinations, such as Mary loves John and Mary likes

John. If one can represent John loves Mary, but not John

likes Mary, then one can represent Mary loves John, but

not Mary likes John. In this case, there is a category R of

relation symbols whose objects, Ri, are symbols referring to each

relation (e.g., loves, likes, etc.), and whose morphisms, 1Ri
, are just

the identity morphisms for each object. (Such a category is called a

discrete category.) Each relation, in this case, is a pair (Ri,A|B).
Hence, the capacity to represent instances of the loves and likes

relations extends to the other instances for both relations.

For these situations, the diagonal and product functors have

extensions. The extension to the diagonal functor is:

D� : R|C?R|(C|C), such that D�0 : (Ri,C). (Ri,(C,C)) and

D�1: (1Ri
,f). (1Ri

,(f ,f)). The product functor is: P� : R|

(C|C)?R|C, such that P�0 : (Ri,(C,D)). (Ri,C|D) and

P�1: (1Ri
,(f ,g)). (1Ri

,f |g). The adjunction, which is an extension

of the one shown in Diagram 15, is shown in the following

commutative diagram:

In this situation, Ri provides the explicit context in which

entities are related.

Under the assumption that these relation symbols belong to a

different category, then cases such as loves loves loves

cannot be generated. Note that supposing different objects for

these entities is not an ad hoc assumption for our theory. R does not

contain members such as John or Mary, and likewise A (or, B)

does not contain relation symbols, because they refer to different

types of entities with respect to the theory—Loves refers to a

relation, which is at the level of objects in our theory, whereas

John and Mary refer to entities in a relationship, which are

members of objects.

Summary
In summary, products may have the systematicity of represen-

tation and inference properties (see also Discussion), but may not

have the compositionality of representation property. Product

functors construct products that have the compositionality

property, but there may be more than one product with this

property. The possible presence of multiple products requires a

principled choice for fixing the product. That choice is provided by

the (diagonal, product) adjoint functor pair. Importantly, the unit

of the adjunction, S1Pr,1PrT, is not a free parameter of the

explanation, it defines the specific adjunction in part; and there is

no choice in representational format (i.e. left-right, or right-left

constituent order)—the given capacity to represent a proposition

fixes the same order for all the other propositions. The same

situation also applies for the explicit (multiple) relational

propositions domain. Hence, systematicity is a necessary conse-

quence of this (extended) adjoint pair without recourse to ad hoc

assumptions, and so meets the explanatory standard set by Aizawa

[2], and Fodor and Pylyshyn [1], for this domain.

Systematicity of relational schemas: (free, forgetful)
adjoint

Another domain in which humans exhibit systematicity is

relational schema induction. This domain is more complex than

the previous one in that the intrinsic connection is between

relations, rather than within one. In the relational schema

induction paradigm [32], participants are required to do cue-

response prediction over a set of stimuli, such as letters and shapes,

whose relationships conform to a group-like structure. For

example, participants are shown (trigram, shape) pairs generated

from a set of four trigrams (e.g., NEJ, POB, KEF, BEJ) and two

shapes (e.g., square, circle), and are required to predict the

ð16Þ

ð17Þ

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 9 July 2010 | Volume 6 | Issue 7 | e1000858

response trigram, also from the same trigram set. Suppose, for

example, a participant is presented with NEJ and square. After

making a prediction, the correct response trigram is presented.

This procedure is repeated with a new cue-response trial. The first

two responses are not predictable prior to the feedback provided

by the correct trigram. Hence, the first two trials are regarded as

‘‘information’’ trials. Each block of eight trials (i.e. all possible

trigram-shape combinations) is repeatedly presented until a certain

criterion level of correct performance is reached (e.g., correct

responses to all eight trials in a block). Each set of eight cue-

response pairs (i.e., four trigram times two shapes) constitutes a

task instance. Once participants reach criterion a new task

instance of eight cue-response pairs was randomly generated from

a larger pool of possible trigrams and shapes (task instance

examples are shown in Tables 1 and 2). The crucial data for this

paradigm are the performances on subsequent task instances.

When subsequent task instances conformed to the same structure,

albeit with different stimuli, mean response error over the 48

participants was at or near optimal level: 2.00 errors per eight

trials for the sequence of task instances conforming to the Klein

group, and 2.67 for task instances conforming to the cyclic-4

group—two information trials are needed to determine the

assignment of novel stimuli to structural elements [32]. The

results provide another example of systematicity of human

cognition: given that a person can correctly do one task instance

and the information trials from the new task instance, then

necessarily they can predict trials of all others, with the usual

provision for a distinction between competence and performance.

This task is modelled as the category of sets with actions, ASet (cf.

[25], 6.3.1, and [33] Definition 5.2), that has objects (Q,X ,d) for

task instances, where Q is a set of states indicated by trigrams, X is

a set of ‘‘actions’’ indicated by shapes, and d : Q|X?Q specifies

the action of a shape on a trigram resulting in a trigram. The

morphisms (g,r) : (Q,X ,d)?(R,Y ,c) in this category consist of

pairs of maps g : Q?R and r : X?Y , such that the following

diagram commutes:

where the identity morphism 1Q,X ,d is the pair of identity maps

(1Q,1X), and compositions are defined component-wise. In our

example, the set Q consists of four elements representing the four

trigrams, and the set X consists of two elements representing the

two shapes.

For the purpose of finding a suitable adjoint, we need to see how X

is naturally embedded in a monoid. Recall that a monoid (M,:,)
consists of a set M and a binary associative operator : that satisfies

closure: i.e., for all a,b [M,a:b [M, whenever a:b is defined, and

there is an identity element [M, such that :m~m~m: . In terms

of our ASets (i.e. objects in ASet), the monoid identity corresponds to

a ‘‘shape’’ whose action is to do nothing at all to the trigrams on

which it acts: it leaves them unchanged. (However, this shape was not

included in the experiments [32].)

The adjoint functor pair used for this domain consists of the

forgetful functor U : ASet?Set|Set, which returns the underlying

sets, i.e. U0 : (Q,X ,d) . (Q,X) and U1 : (r,s) . (r,s), and its

left adjoint, the free functor F : Set|Set?ASet, which constructs

ASets. The (free, forgetful) adjoint is shown in the following

commutative diagram:

where gQ,X (q,x)~((q,),x) and, for the instance of interest to us,

(Q,X) and (R,Y) are the (trigram, shape) pairs of sets for the first

and second tasks (respectively), as defined for example in Tables 1

and 2 so that g : NEJ.GUD, r : square . cross, etc. Full

details and a proof that (F ,U) is an adjoint functor pair are

provided in Text S1.

Our explanation for systematicity in this domain follows the

now familiar pattern, where monoids model the relationships

between actions in each task instance. (Though our argument

employs monoids, nothing essential changes if instead we use

semigroups, or groups, where for example each task instance is

extended with two additional shapes, one explicitly corresponding

to the identity element, and the other to the remaining element in

the Klein, or cyclic-4 group. For these cases, the proofs of

adjointness can be extended to involve free semigroups and free

groups, respectively.) Given an ASet modelling the first task

instance and an ASet modelling the second task instance, there

is more than one homomorphism from the first to the second, only

some of which afford the correct responses to the stimuli

in the second task instance. For example, one homomorphism

has the following trigram and shape mappings: g’ : NEJ. GUD,

g’ : POB. QAD, g’ : KEF . GUD, g’ : BEJ . QAD, r’ :
square . cross, and r’ : circle . cross. Basically, the first

table collapses to a table with one row and two columns. It is straight

forward to check that it is indeed a homomorphism, for example,

g’0mQ,X (NEJ,circle)~g’(BEJ)~ QAD~ mR,Y (GUD,cross) ~
mR,Y 0(g’,r’)(NEJ,circle). However, this homomorphism does

not yield the correct responses to some of the stimuli in the

second task instance. For example, all predictions to trigrams

REZ and JOQ are no longer possible. Thus, a principled choice is

required to select only those homomorphisms that indeed result

in models for the second task instance. That choice is determined

by (g,r) and the commutative property of the adjunction. That is,

having obtained the first task instance, and given the two

ð18Þ

ð19Þ

Table 1. First task instance.

acts-on NEJ POB KEF BEJ

square POB NEJ BEJ KEF

circle BEJ KEF POB NEJ

doi:10.1371/journal.pcbi.1000858.t001

Table 2. Second task instance.

acts-on GUD QAD JOQ REZ

cross QAD GUD REZ JOQ

triangle REZ JOQ QAD GUD

doi:10.1371/journal.pcbi.1000858.t002

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 10 July 2010 | Volume 6 | Issue 7 | e1000858

information trials of the second task instance that identify the

correspondences between task stimuli, then there is one and only

one homomorphism making the diagram commute, so that

correct responses are obtained from the remaining trials of the

second task instance. And so, systematicity is a necessary

consequence of this adjunction.

Explanatory levels: n-category theory
Some readers may be interested in developing alternatives, or

extensions to existing theories to address the systematicity problem

in light of our explanation, so it is worth formally characterizing

how our approach differs from previous ones. The difference

between our category theory explanation and Classical/Connec-

tionist approaches to systematicity may be characterized as higher-

order versus first-order theories. Category theory also provides a

formal basis for this distinction in terms of more general n-category

theory (see, e.g., [34]). Though the concerns of n-category theorists

go way beyond what we need here, some elementary aspects of the

theory are used to formalize the difference between why our

adjoint functors explanation addresses the systematicity problem

and why the Classical or Connectionist approach does not.

Notice that the definitions of functor and natural transformation

are very similar to the definition of a morphism. In fact, functors

and natural transformations are morphisms at different levels of

analysis: a natural transformation is a morphism one level above

functors as we shall see. For n-category theory, a category such as

Set is a 1-category, with 0-objects (i.e. sets) for objects and 1-

morphisms (i.e. functions) for arrows. A functor is a morphism

between categories. The category of categories, Cat, has categories

for objects and functors for arrows. Thus, a functor is a 2-

morphism between 1-objects (i.e. 1-categories) in a 2-category. A

natural transformation is a morphism between functors. The

functor category, Fun(C,D) of functors from C to D, has functors

for objects and natural transformations for arrows. Thus, a natural

transformation is a 3-morphism between 2-objects (i.e. functors) in

a 3-category. (A 0-category is just a discrete category, where the only

arrows are identities, which are 0-morphisms.) In this way, the

order n of the category provides a formal notion of explanatory

level.

Classical or Connectionist compositionality is essentially a

lower-levels attempt to account for systematicity. For the examples

we used, that level is perhaps best described in terms of a 1-

category. Indeed, a context-free grammar defined by a graph is

modelled as the free category on that graph containing sets of

terminal and non-terminal symbols for objects and productions for

morphisms [31]. By contrast, our category theory explanation

involves higher levels of analysis, specifically functors and natural

transformations, which live in 2-categories and 3-categories,

respectively. Of course, one can also develop higher-order

grammars that take as input or return as output other grammars.

Similarly, one can develop higher-order networks that take as

input or return as output other networks (e.g., networks whose

connectivity is dynamic, such as cascade correlation [35]).

However, the problem is that neither Classical nor Connectionist

compositionality delineates those (higher-order) grammars or

networks that have the systematicity property from those that do

not. Likewise for our category theory explanation, not just any

functor, nor just any natural transformation accounts for

systematicity. If the explanation was left at either of these levels,

then our approach would also succumb to the same problem that

befalls Classicism and Connectionism—i.e. the problem of having

to stipulate, ad hoc, just which functors or natural transformations

account for the systematicity property. Rather, it is a natural

transformation between an identity functor and a composition of

two other functors (F0G) that defines the adjunction that accounts

for systematicity relative to the particular domain of interest. In

this formal sense, a crucial difference is that there is also a

between-levels aspect to our explanation.

Discussion

Our adjoints explanation of systematicity has essentially two

parts: (1) existence, showing how a particular connection between

cognitive capacities is possible from a functorial specification of the

architecture; and (2) uniqueness, explaining why that particular

connection is necessary because it is the one and only one that

satisfies the commutativity property of the adjunction. In contrast,

the Classical and Connectionist explanations only provide an

account of existence, but not uniqueness. That is, some

grammars/networks afford the required intrinsic links between

capacities and some do not, just like some functorial constructions

do and some do not; but, for Classicism or Connectionism, there is

no further explanation determining only those grammars or

networks yielding systematicity (other than by ad hoc assumption),

whereas for the category theory explanation the adjunction

specifies only the systematic functors. So, our explanation meets

the explanatory standard laid out by Aizawa.

To be regarded as a theoretical explanation for systematicity,

such an explanation should be potentially falsifiable. Our

explanation could be challenged by an alternative theory that

accounts for systematicity (without ad hoc assumptions) in a way

that does not require, or implement an adjunction. This possibility

would not falsify our explanation as such, but may provide an

alternative theory that is preferred on other grounds. Alternatively,

there may exist a domain in which humans exhibit systematicity

but for which there does not exist a relevant adjunction. Hence,

the category theory approach we have put forward is in principle

falsifiable.

The unit of an adjunction is a natural transformation between

functors. The sense in which a transformation is natural is that the

transformation does not depend on a particular ‘‘basis’’. A

mathematician’s example is to contrast the dual of a vector space

with the, natural, double dual (dual of the dual) of a vector space—

the former depends on a specific set of basis vectors chosen ad hoc,

the latter does not. The analogue, here, is that our explanation of

systematicity is natural in that it does not depend on a particular

representational scheme (i.e., constituent order for relational

propositions). Hence, the explanation does not depend on ad hoc

assumptions about internal representations. Contrast this expla-

nation with the Classical one, which must assume a particular

grammatical form (e.g., G1 over G2) to fit the data.

In addition to explaining systematicity, our category theory

approach has further implications. According to our explanation,

systematicity with respect to binary relational propositions requires

a category with products. A category theory account has also been

provided for the strikingly similar profiles of development for a

suite of reasoning abilities that included Transitive Inference and Class

Inclusion, among others [30]—all abilities are acquired around the

age of five years. The difference between the difficulties of younger

children and the successes of older children (relative to age five)

across all these reasoning tasks was explained as their capacity to

compute (co)products. (A coproduct is related to a product by arrow

reversal—see, e.g., [28] for a formal definition.) Therefore, our

explanation implies that systematicity is not a property of younger

children’s cognition. Some support for this implication is found on

memory tasks that require binding the background context of

memorized items [36], though further work is needed to test this

implication directly.

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 11 July 2010 | Volume 6 | Issue 7 | e1000858

Our explanation for systematicity in regard to binary relational

propositions does not depend on Set, it only requires a category

with products. For example, the categories Top of topological

spaces and continuous mappings, and Vec of vector spaces and

linear mappings [21] could also be used. These possibilities imply

that an explanation of systematicity does not depend on a

particular (discrete symbolic, or continuous subsymbolic) repre-

sentational format. Thus, a further benefit is that our approach

opens the way for integration of other (sub/symbolic) levels of

analysis.

Though some effort is needed to provide a category theory

explanation for systematicity, even for a relatively simple domain

such as relational propositions, the potential payoff is that our

explanation generalizes to other domains where an appropriate

adjunction is identified. This sort of tradeoff has been noted

elsewhere in the context of a category theory treatment of

automata [25]. We sketch one possibility in the domain of context-

free grammars. Languages conforming to context-free grammars

can be modelled as the free category on the directed graph that

defines the grammar, whose vertices are sets of terminal and non-

terminal symbols, and edges are transitions [31]. The left adjoint is

the functor F : Grph?Cat from the category of directed graphs

and graph homomorphisms to the category of categories and

functors (category homomorphisms). The right adjoint is the

forgetful functor U : Cat?Grph, which returns the underlying

graph (i.e. the arrows, forgetting their compositions). The

explanation here is analogous to our explanation for relational

schemas. The problem Aizawa raised with respect to Classicism is

avoided here because systematicity is not derived from individual

grammars, but homomorphic relationships between grammars.

Having provided an explanation of systematicity in terms of the

rather abstract category theory concept of adjoint functors, one

may wonder what this explanation means for a more typical

conception of cognitive architecture in terms of internal

representations and processes, and their realization in the brain.

Human cognition is remarkable in that it affords the ability to

think about things that have no sensory access (e.g., ‘‘a dog that is

one lightyear long …’’); yet reason about such entities as if they

were grounded in our everyday experience (‘‘… is smaller than a

dog that is two lightyears long’’). However, these two aspects must

be reconciled: unbridled abstraction means that one can no longer

determine what a particular internal representation is supposed to

refer to; yet blinkering the system with over-narrowly defined

representations curtails one’s ability to think outside the box. These

aspects appear in the form of functors and natural transformations

in category theory. The adjunction is the category theory way of

bringing them into precise ‘‘synchrony’’, or co-ordination, so that

we may think abstractly about very specific things.

The realization of computational processes in the brain is

classically conceived as a physical instantiation mapping from

computational states to brain states, where the syntactic relation-

ships between computational states correspond to physical

relationships between brain states via such maps (see [1], p13).

Category theory affords a similar, but more general and formal

treatment in terms of functors. Diagrams of categories are formally

defined as functors that map graphs (i.e. the shape of the diagram)

to categories (see, e.g., [37]). Analogously, a categorial cognitive

system would involve a functor from a categorial computational

model to a brain system.

Up to this point, we have not considered the relatively new

Bayesian approach to cognitive modelling (see, e.g., [38,39] for

summaries) because, to our knowledge, a Bayesian explanation for

systematicity has not yet been articulated. Nonetheless, the

hierarchical Bayesian approach offers a significant advance with

the ability to learn a diverse range of structures, such as lists, trees,

and other (acyclic or cyclic) graphs, from data [40]. An important

aspect of this approach is that structural form (or the type of

structure) is encoded as prior beliefs by hyperparameters in the

higher layers, and instances of those structures are encoded as

parameters in the lower layers in so far as they conform to the

constraints imposed by the data (environment). In this way, the

architecture is not required to presume one particular structure to

induce a group of behaviours from data. The hierarchical

Bayesian approach affords the sort of higher-order theory that

our analysis in the previous section implies. However, the question

for the Bayesians is essentially the same as for the Classicists and

Connectionists: that is, to articulate the Bayesian architectural

principles from which systematicity necessarily follows. As the

approach currently stands, systematicity depends on a number of

factors including the available data, network connectivity, and

optimization parameters. A Bayesian network with independently

modifiable parameters for representing the distributions of

constituents in each argument position of a relation may not have

the systematicity property in the absence of data with, say, Mary

in the patient position (so called strong systematicity [18]), simply

because there may be no (prior) information available to

determine the value of the associated parameters. Hyperpara-

meters may enable a dependency between lower level parameters

so that the acquisition of one entails the acquisition of another.

Still, systematicity may not necessarily follow from hyperpara-

meters alone: for example, one can envisage a network where

partial hyperparametrization links some but not all behaviours

within the group, analogous to the problem that was raised with

respect to classical compositionality.

All theories make certain assumptions. The question is whether

those assumptions are extrinsic to the theory and carry the

essential explanatory burden (i.e. they are ad hoc). In our case, one

may question whether supposing that an object contains

representations of John and Mary is not itself an ad hoc

assumption, for the Cartesian product does not necessarily

represent all possible combinations of mental representations

[41] (e.g., fJ, Mg|fMg generates representations corresponding

to John loves Mary and Mary loves Mary, but not John

loves John). Our explanation for systematicity of binary

relational propositions is a consequence of the (diagonal, product)

adjoint (Diagram 15), not a specific categorical product. Though

the categorical product is a component of the explanation, the

particular product is derived from the adjunction, not chosen

independently of it. Where the constituent entities are of the same

sort, and so belong to the same object (S) in our theory, the

diagonal functor generates the object pair (S,S), and the product

functor takes (S,S) and generates the product object S|S, hence

cases like fJ, Mg|fMg cannot occur in this formulation. The

assumption that relation symbols belong to a different category

than the related arguments precludes the generation of intrinsi-

cally unconnected cases, such as loves loves loves. Typing,

in this sense, shares some of the explanatory burden, but types are

not extrinsic to our theory. An element cannot exist without

belonging to an object (its type) in a category, by definition. Hence,

types are intrinsic to the theory. Moreover, the explanatory

burden is also born by the adjunction in our example domains.

Even with typing, there must still be a principled choice for the

order of those constituents, when they involve the same objects,

which is provided by the adjunction. And, given that adjunctions

are central to category theory, neither the assumption of types, nor

our use of adjunction can be regarded as ad hoc for the purpose of

explaining systematicity in these domains. Classicism also makes a

distinction between atomic and molecular representations, as a

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 12 July 2010 | Volume 6 | Issue 7 | e1000858

core assumption [1]. However, even under core assumptions that

are equivalent to ours—John and Mary belong to the same word

classes, which differ from loves—systematicity does not

necessarily follow, as exemplified by grammar G2. Hence, the

critical difference between our explanation of systematicity and the

Classical approach is the adjunction.

This assumption of typing, though, is acute for quasi-systematic

domains, where cognitive capacity may extend to some but not all

possible constituent combinations, which appear to be particularly

prevalent in language (see [41]). For these cases, we would also

need category theory-derived principled restrictions to products.

Equalizers and pullbacks (see [30] for an application to cognitive

development) are two ways to restrict (product) objects, in the

same arrow-theoretic style. Products, pullbacks and equalizers are

all instances of the general, formal concept of a limit in category

theory. The existence of adjoint functors is closely linked to the

existence of limits in the respective categories (cf. adjoint functor

theorems [21], p210–214), which suggests that an appropriate

adjunction can also be found for domains that require an

explanation for quasi-systematicity.

Needless to say, our category theory explanation is not the final

word on a theory of cognitive architecture. For our approach (and

Classicism), where the assignment of elements to objects (and,

words to word classes) is asserted, there is also the broader question

of why they get assigned in a particular way. This question

pertains to the acquisition of representations, whereas the

systematicity problem pertains to their intrinsic connections.

Incorporating category theory into the Bayesian approach may

provide a more integrative theory in this regard. A connection

between category theory and probability has been known for some

time (see [42]), and category theory concepts have been

incorporated into the development of probabilistic functional

programming [43]. A potentially fruitful line of future research,

then, may be to identify a suitable adjunction with respect to, say,

a category of Bayesian models, if such a category exists.

From a category theory perspective, we now see why cognitive

science lacked a satisfactory explanation for systematicity—

cognitive scientists were working with lower-order theories in

attempting to explain an essentially higher-order property.

Category theory offers a re-conceptualization for cognitive science,

analogous to the one that Copernicus provided for astronomy,

where representational states are no longer the center of the

cognitive universe—replaced by the relationships between the

maps that transform them.

Supporting Information

Text S1 Proof that the free and forgetful functors for the

category ASet form an adjoint functor pair.

Found at: doi:10.1371/journal.pcbi.1000858.s001 (0.10 MB PDF)

Acknowledgments

We thank the reviewers for comments that have helped improve the

exposition of this work.

Author Contributions

Analyzed the data: SP WHW. Contributed reagents/materials/analysis

tools: SP WHW. Wrote the paper: SP WHW.

References

1. Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: A

critical analysis. Cognition 28: 3–71.

2. Aizawa K (2003) The systematicity arguments. Studies in Mind and Brain. New
York: Kluwer Academic.

3. Fodor JA, McLaughlin BP (1990) Connectionism and the problem of

systematicity: Why Smolensky’s solution doesn’t work. Cognition 35: 183–
204.

4. Fodor JA (1997) Connectionism and the problem of systematicity (continued):
Why Smolensky’s solution still doesn’t work. Cognition 63: 109–119.

5. van Gelder T (1990) Compositionality: A connectionist variation on a classical

theme. Cogn Sci 14: 355–384.

6. Smolensky P (1987) The constituent structure of connectionist mental states: A
reply to Fodor and Pylyshyn. Southern J Philos 26: 137–161.

7. Smolensky P (1991) Connectionism, constituency, and the language of thought.

In: Loewer B, Rey G, eds. Meaning in Mind: Fodor and his critics.
CambridgeMA: Blackwells, chapter 12.

8. Aizawa K (2003) Cognitive architecture: The structure of cognitive represen-

tations. In: Stich SP, Warfield TA, eds. The Blackwell guide to philosophy of
mind. CambridgeMA: Blackwell, chapter 7. pp 172–189.

9. Smolensky P (1990) Tensor product variable binding and the representation of

symbolic structures in connectionist systems. Artif Intell 46: 159–216.

10. Phillips S (2007) Kenneth Aizawa, The systematicity arguments, Studies in brain

and mind. Mind Mach 17: 357–360.

11. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
back-propagation of error. Nature 323: 533–536.

12. Elman JL (1990) Finding structure in time. Cogn Sci 14: 179–211.

13. Marcus GF (1998) Rethinking eliminative connectionism. Cogn Psychol 37:

243–282.

14. Marcus GF (1998) Can connectionism save constructivism? Cognition 66:

153–182.

15. Phillips S (1998) Are feedforward and recurrent networks systematic? analysis
and implications for a connectionist cognitive architecture. Connect Sci 10:

137–160.

16. Phillips S (1999) Systematic minds, unsystematic models: Learning transfer in
humans and networks. Mind Mach 9: 383–398.

17. Phillips S (2000) Constituent similarity and systematicity: The limits of first-order

connectionism. Connect Sci 12: 1–19.

18. Hadley RF (1994) Systematicity in connectionist language learning. Mind Lang
9: 247–272.

19. Niklasson L, van Gelder T (1994) Systematicity and connectionist language
learning. Mind Lang 9: 288–302.

20. Fodor JA (1987) Psychosemantics: The problem of meaning in the philosophy of

mind. Explorations in cognitive science. Cambridge, MA: MIT Press.

21. Awodey S (2006) Category theory. Oxford Logic Guides. New York, NY:
Oxford University Press.

22. Lawvere FW, Schanuel SH (1997) Conceptual mathematics: A first introduction

to categories. Foundations of Computing. Cambridge, UK: Cambridge
University Press.

23. Mac Lane S (2000) Categories for the working mathematician. Graduate Texts
in Mathematics. New York, NY: Springer, 2nd edition.

24. Eilenberg S, Mac Lane S (1945) General theory of natural equivalences. Trans

Amer Math Soc 58: 231–294.

25. Arbib MA, Manes EG (1975) Arrows, structures, and functors: The categorical
imperative. London, UK: Academic Press.

26. Barr M, Wells C (1990) Category theory for computing science. Prentice Hall

International Series in Computer Science. New York: Prentice Hall, first edition.

27. Goguen J (1991) A categorical manifesto. Math Structures Comput Sci 1: 49–67.

28. Pierce BC (1991) Basic category theory for computer scientists. Foundations of

Computing. Cambridge, UK: MIT Press.

29. Halford GS, Wilson WH (1980) A category theory approach to cognitive
development. Cogn Psychol 12: 356–411.

30. Phillips S, Wilson WH, Halford GS (2009) What do Transitive Inference and

Class Inclusion have in common? Categorical (co)products and cognitive
development. PLoS Comput Biol 5: e1000599.

31. Walters RFC (1991) Categories and computer science. Cambridge Computer

Science Texts. Cambridge, UK: Cambridge University Press.

32. Halford GS, Bain JD, Maybery MT, Andrews G (1998) Induction of relational

schemas: Common processes in reasoning and complex learning. Cogn Psychol

35: 201–245.

33. Wilson WH (1979) On induced representations of Lie algebras, groups, and

coalgebras. J Algebra 58: 37–50.

34. Leinster T (2003) Higher operads, higher categories. London Mathematical
Society Lecture Notes Series. Cambridge, UK: Cambridge University Press.

35. Fahlman SE, Lebiere C (1990) The cascade-correlation learning algorithm.

Technical Report CMU-CS-90-100, Carnegie Mellon University.

36. Lloyd ME, Doydum AO, Newcombe NS (2009) Memory binding in early
childhood: evidence for a retrieval deficit. Child Dev 80: 1321–1328.

37. Crole RL (1993) Categories for types. New York, NY: Cambridge University

Press.

38. Griffiths TL, Kemp C, Tenenbaum JB (2008) Bayesian models of cognition. In:

Sun R, ed. Cambridge Handbook of Computational Cognitive Modeling. New
York, NY: Cambridge University Press, chapter 3. pp 59–100.

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 13 July 2010 | Volume 6 | Issue 7 | e1000858

39. Tenenbaum JB, Griffiths TL, Kemp C (2006) Theory-based Bayesian models of

inductive learning and reasoning. Trend Cogn Sci 10: 309–318.
40. Kemp C, Tenenbaum JB (2008) The discovery of structural form. PNAS 105:

10687–10692.

41. Johnson K (2004) On the systematicity of language and thought. J Philos 101:
111–139.

42. Giry M (1981) A categorical approach to probability theory. In: Banaschewski-

Bernhard, ed. Categorical aspects of topology and analysis Springer-Verlag,

volume 915 of Lecture Notes in Mathematics. pp 65–85.

43. Erwig M, Kollmansberger S (2006) Probabilistic functional programming in

Haskell. J Funct Program 16: 21–34.

Categorial Compositionality

PLoS Computational Biology | www.ploscompbiol.org 14 July 2010 | Volume 6 | Issue 7 | e1000858

